Skip to content

Commit 2756ffb

Browse files
authored
Merge pull request #202307 from WilliamDAssafMSFT/20220602-reassing-dphansen
20220621 reassign dphansen
2 parents c3ff0d1 + 971d2fd commit 2756ffb

File tree

2 files changed

+11
-9
lines changed

2 files changed

+11
-9
lines changed

articles/azure-sql-edge/deploy-onnx.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,10 @@ keywords: deploy SQL Edge
66
ms.prod: sql
77
ms.technology: machine-learning
88
ms.topic: quickstart
9-
author: dphansen
10-
ms.author: davidph
11-
ms.date: 05/06/2021
9+
author: WilliamDAssafMSFT
10+
ms.author: wiassaf
11+
ms.reviewer: hudequei
12+
ms.date: 06/21/2022
1213
ms.custom: mode-other
1314
---
1415

@@ -27,8 +28,8 @@ This quickstart is based on **scikit-learn** and uses the [Boston Housing datase
2728
* Install Python packages needed for this quickstart:
2829

2930
1. Open [New Notebook](/sql/azure-data-studio/sql-notebooks) connected to the Python 3 Kernel.
30-
1. Click **Manage Packages**
31-
1. In the **Installed** tab, look for the following Python packages in the list of installed packages. If any of these packages are not installed, select the **Add New** tab, search for the package, and click **Install**.
31+
1. Select **Manage Packages**
32+
1. In the **Installed** tab, look for the following Python packages in the list of installed packages. If any of these packages are not installed, select the **Add New** tab, search for the package, and select **Install**.
3233
- **scikit-learn**
3334
- **numpy**
3435
- **onnxmltools**

articles/azure-sql-edge/onnx-overview.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,10 @@ services: sql-edge
66
ms.service: sql-edge
77
ms.subservice: machine-learning
88
ms.topic: conceptual
9-
author: dphansen
10-
ms.author: davidph
11-
ms.date: 05/19/2020
9+
author: WilliamDAssafMSFT
10+
ms.author: wiassaf
11+
ms.reviewer: hudequei
12+
ms.date: 06/21/2022
1213
---
1314

1415
# Machine learning and AI with ONNX in SQL Edge
@@ -25,7 +26,7 @@ To obtain a model in the ONNX format:
2526

2627
- **Model Building Services**: Services such as the [automated Machine Learning feature in Azure Machine Learning](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb) and [Azure Custom Vision Service](../cognitive-services/custom-vision-service/getting-started-build-a-classifier.md) support directly exporting the trained model in the ONNX format.
2728

28-
- [**Convert and/or export existing models**](https://github.com/onnx/tutorials#converting-to-onnx-format): Several training frameworks (e.g. [PyTorch](https://pytorch.org/docs/stable/onnx.html), Chainer, and Caffe2) support native export functionality to ONNX, which allows you to save your trained model to a specific version of the ONNX format. For frameworks that do not support native export, there are standalone ONNX Converter installable packages that enable you to convert models trained from different machine learning frameworks to the ONNX format.
29+
- [**Convert and/or export existing models**](https://github.com/onnx/tutorials#converting-to-onnx-format): Several training frameworks (for example, [PyTorch](https://pytorch.org/docs/stable/onnx.html), Chainer, and Caffe2) support native export functionality to ONNX, which allows you to save your trained model to a specific version of the ONNX format. For frameworks that do not support native export, there are standalone ONNX Converter installable packages that enable you to convert models trained from different machine learning frameworks to the ONNX format.
2930

3031
**Supported frameworks**
3132
* [PyTorch](http://pytorch.org/docs/master/onnx.html)

0 commit comments

Comments
 (0)