Skip to content

Commit 2870c25

Browse files
committed
addressing validation errors
1 parent c4d5fcd commit 2870c25

File tree

2 files changed

+9
-24
lines changed

2 files changed

+9
-24
lines changed

articles/machine-learning/how-to-auto-train-image-models.md

Lines changed: 4 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -544,19 +544,6 @@ Once the run completes, you can register the model that was created from the bes
544544

545545
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=best_run)]
546546

547-
### create a local folder and download
548-
549-
550-
# [CLI v2](#tab/CLI-v2)
551-
552-
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
553-
```yaml
554-
to be supported
555-
```
556-
557-
558-
# [Python SDK v2 (preview)](#tab/SDK-v2)
559-
560547
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=create_local_dir)]
561548

562549
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=download_model)]
@@ -599,6 +586,8 @@ auth_mode: key
599586
### Create the endpoint
600587

601588
Using the `MLClient` created earlier, we'll now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.
589+
590+
602591
# [CLI v2](#tab/CLI-v2)
603592

604593
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
@@ -613,6 +602,8 @@ az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR
613602
### Configure online deployment
614603

615604
A deployment is a set of resources required for hosting the model that does the actual inferencing. We'll create a deployment for our endpoint using the `ManagedOnlineDeployment` class. You can use either GPU or CPU VM SKUs for your deployment cluster.
605+
606+
616607
# [CLI v2](#tab/CLI-v2)
617608

618609
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]

articles/machine-learning/tutorial-auto-train-image-models.md

Lines changed: 5 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -404,17 +404,6 @@ Once the run completes, you can register the model that was created from the bes
404404

405405
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=best_run)]
406406

407-
### create a local folder and download
408-
409-
# [CLI v2](#tab/CLI-v2)
410-
411-
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
412-
```yaml
413-
to be supported
414-
```
415-
416-
# [Python SDK v2 (preview)](#tab/SDK-v2)
417-
418407
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=create_local_dir)]
419408

420409
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=download_model)]
@@ -455,9 +444,12 @@ auth_mode: key
455444
### Create the endpoint
456445

457446
Using the `MLClient` created earlier, we'll now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.
447+
448+
458449
# [CLI v2](#tab/CLI-v2)
459450

460451
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
452+
461453
```azurecli
462454
az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
463455
```
@@ -469,6 +461,8 @@ az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR
469461
### Configure online deployment
470462

471463
A deployment is a set of resources required for hosting the model that does the actual inferencing. We'll create a deployment for our endpoint using the `ManagedOnlineDeployment` class. You can use either GPU or CPU VM SKUs for your deployment cluster.
464+
465+
472466
# [CLI v2](#tab/CLI-v2)
473467

474468
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]

0 commit comments

Comments
 (0)