You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The Azure Machine Learning CLI provides the ability to attach and manage a Synapse Spark pool from the command line interface, using intuitive YAML syntax and commands.
69
+
With the Azure Machine Learning CLI, we can attach and manage a Synapse Spark pool from the command line interface, using intuitive YAML syntax and commands.
70
70
71
71
To define an attached Synapse Spark pool using YAML syntax, the YAML file should cover these properties:
72
72
@@ -129,7 +129,7 @@ The YAML files above can be used in the `az ml compute attach` command as the `-
129
129
az ml compute attach --file <YAML_SPECIFICATION_FILE_NAME>.yaml --subscription <SUBSCRIPTION_ID> --resource-group <RESOURCE_GROUP> --workspace-name <AML_WORKSPACE_NAME>
130
130
```
131
131
132
-
This shows the expected output of the above command:
132
+
This sample shows the expected output of the above command:
133
133
134
134
```azurecli
135
135
Class SynapseSparkCompute: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
@@ -174,7 +174,7 @@ To display details of an attached Synapse Spark pool, execute the `az ml compute
174
174
az ml compute show --name <ATTACHED_SPARK_POOL_NAME> --subscription <SUBSCRIPTION_ID> --resource-group <RESOURCE_GROUP> --workspace-name <AML_WORKSPACE_NAME>
175
175
```
176
176
177
-
This shows the expected output of the above command:
177
+
This sample shows the expected output of the above command:
178
178
179
179
```azurecli
180
180
<ATTACHED_SPARK_POOL_NAME>
@@ -209,7 +209,7 @@ To see a list of all computes, including the attached Synapse Spark pools in a w
209
209
az ml compute list --subscription <SUBSCRIPTION_ID> --resource-group <RESOURCE_GROUP> --workspace-name <AML_WORKSPACE_NAME>
210
210
```
211
211
212
-
This shows the expected output of the above command:
212
+
This sample shows the expected output of the above command:
213
213
214
214
```azurecli
215
215
[
@@ -417,7 +417,7 @@ Execute the `az ml compute update` command, with appropriate parameters, to upda
417
417
az ml compute update --identity SystemAssigned --subscription <SUBSCRIPTION_ID> --resource-group <RESOURCE_GROUP> --workspace-name <AML_WORKSPACE_NAME> --name <ATTACHED_SPARK_POOL_NAME>
418
418
```
419
419
420
-
This shows the expected output of the above command:
420
+
This sample shows the expected output of the above command:
421
421
422
422
```azurecli
423
423
Class SynapseSparkCompute: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
@@ -460,7 +460,7 @@ az ml compute update --identity UserAssigned --user-assigned-identities /subscri
460
460
461
461
```
462
462
463
-
This shows the expected output of the above command:
463
+
This sample shows the expected output of the above command:
464
464
465
465
```azurecli
466
466
Class SynapseSparkCompute: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
@@ -582,7 +582,7 @@ We might want to detach an attached Synapse Spark pool, to clean up a workspace.
582
582
583
583
# [Studio UI](#tab/studio-ui)
584
584
585
-
The Azure Machine Learning studio UI also provides a way to detach an attached Synapse Spark pool. To do this:
585
+
The Azure Machine Learning studio UI also provides a way to detach an attached Synapse Spark pool. Follow these steps to do this:
586
586
587
587
1. Open the **Details** page for the Synapse Spark pool, in the Azure Machine Learning studio.
588
588
@@ -592,15 +592,15 @@ The Azure Machine Learning studio UI also provides a way to detach an attached S
An attached Synapse Spark pool can be detached by executing the `az ml compute detach` command with name of the pool passed using `--name` parameter as following:
595
+
An attached Synapse Spark pool can be detached by executing the `az ml compute detach` command with name of the pool passed using `--name` parameter as shown here:
596
596
597
597
```azurecli
598
598
599
599
az ml compute detach --name <ATTACHED_SPARK_POOL_NAME> --subscription <SUBSCRIPTION_ID> --resource-group <RESOURCE_GROUP> --workspace-name <AML_WORKSPACE_NAME>
600
600
601
601
```
602
602
603
-
This shows the expected output of the above command:
603
+
This sample shows the expected output of the above command:
604
604
605
605
```azurecli
606
606
Are you sure you want to perform this operation? (y/n): y
@@ -611,7 +611,7 @@ Are you sure you want to perform this operation? (y/n): y
An `MLClient.compute.begin_delete()` function call will do this for us. Pass the `name` of the attached Synapse Spark pool, along with the action `Detach`, to the function. This code snippet detaches a Synapse Spark pool from an Azure Machine Learning workspace:
614
+
We will use an `MLClient.compute.begin_delete()` function call. Pass the `name` of the attached Synapse Spark pool, along with the action `Detach`, to the function. This code snippet detaches a Synapse Spark pool from an Azure Machine Learning workspace:
0 commit comments