Skip to content

Commit 2d0727f

Browse files
Merge pull request #266735 from fbsolo-ms1/freshness-update-branch
Freshness update for how-to-datastore.md . . .
2 parents 2bd05d1 + 45108c0 commit 2d0727f

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

articles/machine-learning/how-to-datastore.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: how-to
99
ms.author: yogipandey
1010
author: ynpandey
1111
ms.reviewer: franksolomon
12-
ms.date: 10/25/2023
12+
ms.date: 02/20/2024
1313
ms.custom: data4ml, ignite-2023, devx-track-azurecli
1414
# Customer intent: As an experienced Python developer, I need to make my data in Azure storage available to my remote compute resource, to train my machine learning models.
1515
---
@@ -29,7 +29,7 @@ In this article, learn how to connect to Azure data storage services with Azure
2929
- An Azure Machine Learning workspace.
3030

3131
> [!NOTE]
32-
> Azure Machine Learning datastores do **not** create the underlying storage account resources. Instead, they link an **existing** storage account for Azure Machine Learning use. Azure Machine Learning datastores are not required for this. If you have access to the underlying data, you can use storage URIs directly.
32+
> Azure Machine Learning datastores do **not** create the underlying storage account resources. Instead, they link an **existing** storage account for Azure Machine Learning use. This does not require Azure Machine Learning datastores. If you have access to the underlying data, you can use storage URIs directly.
3333
3434
## Create an Azure Blob datastore
3535

@@ -97,7 +97,7 @@ ml_client.create_or_update(store)
9797
```
9898

9999
# [CLI: Identity-based access](#tab/cli-identity-based-access)
100-
Create the following YAML file (be sure to update the appropriate values):
100+
Create the following YAML file (make sure you update the appropriate values):
101101

102102
```yaml
103103
# my_blob_datastore.yml
@@ -116,7 +116,7 @@ az ml datastore create --file my_blob_datastore.yml
116116
```
117117

118118
# [CLI: Account key](#tab/cli-account-key)
119-
Create the following YAML file (be sure to update the appropriate values):
119+
Create this YAML file (make sure you update the appropriate values):
120120

121121
```yaml
122122
# my_blob_datastore.yml
@@ -137,7 +137,7 @@ az ml datastore create --file my_blob_datastore.yml
137137
```
138138

139139
# [CLI: SAS](#tab/cli-sas)
140-
Create the following YAML file (be sure to update the appropriate values):
140+
Create this YAML file (make sure you update the appropriate values):
141141

142142
```yaml
143143
# my_blob_datastore.yml
@@ -204,7 +204,7 @@ ml_client.create_or_update(store)
204204
```
205205

206206
# [CLI: Identity-based access](#tab/cli-adls-identity-based-access)
207-
Create the following YAML file (updating the values):
207+
Create this YAML file (updating the values):
208208

209209
```yaml
210210
# my_adls_datastore.yml
@@ -223,7 +223,7 @@ az ml datastore create --file my_adls_datastore.yml
223223
```
224224

225225
# [CLI: Service principal](#tab/cli-adls-sp)
226-
Create the following YAML file (updating the values):
226+
Create this YAML file (updating the values):
227227

228228
```yaml
229229
# my_adls_datastore.yml
@@ -293,7 +293,7 @@ ml_client.create_or_update(store)
293293
```
294294

295295
# [CLI: Account key](#tab/cli-azfiles-account-key)
296-
Create the following YAML file (updating the values):
296+
Create this YAML file (updating the values):
297297

298298
```yaml
299299
# my_files_datastore.yml
@@ -314,7 +314,7 @@ az ml datastore create --file my_files_datastore.yml
314314
```
315315

316316
# [CLI: SAS](#tab/cli-azfiles-sas)
317-
Create the following YAML file (updating the values):
317+
Create this YAML file (updating the values):
318318

319319
```yaml
320320
# my_files_datastore.yml
@@ -378,7 +378,7 @@ ml_client.create_or_update(store)
378378
```
379379

380380
# [CLI: Identity-based access](#tab/cli-adlsgen1-identity-based-access)
381-
Create the following YAML file (updating the values):
381+
Create this YAML file (updating the values):
382382

383383
```yaml
384384
# my_adls_datastore.yml
@@ -396,7 +396,7 @@ az ml datastore create --file my_adls_datastore.yml
396396
```
397397

398398
# [CLI: Service principal](#tab/cli-adlsgen1-sp)
399-
Create the following YAML file (updating the values):
399+
Create this YAML file (updating the values):
400400

401401
```yaml
402402
# my_adls_datastore.yml
@@ -422,9 +422,9 @@ az ml datastore create --file my_adls_datastore.yml
422422

423423
## Create a OneLake (Microsoft Fabric) datastore (preview)
424424

425-
This section describes the creation of a OneLake datastore using various options. The OneLake datastore is part of Microsoft Fabric. At this time, Azure Machine Learning supports connecting to Microsoft Fabric Lakehouse artifacts that includes folders/ files and Amazon S3 shortcuts. For more information about Lakehouse, see [What is a lakehouse in Microsoft Fabric](/fabric/data-engineering/lakehouse-overview).
425+
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Azure Machine Learning supports connection to Microsoft Fabric Lakehouse artifacts that include folders / files and Amazon S3 shortcuts. For more information about Lakehouse, visit [What is a lakehouse in Microsoft Fabric](/fabric/data-engineering/lakehouse-overview).
426426

427-
To create a OneLake datastore, you need
427+
OneLake datastore creation requires
428428

429429
- Endpoint
430430
- Fabric workspace name or GUID
@@ -438,12 +438,12 @@ In your Microsoft Fabric instance, you can find the workspace information as sho
438438
:::image type="content" source="media/how-to-datastore/fabric-workspace.png" alt-text="Screenshot that shows Fabric Workspace details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-workspace.png":::
439439

440440
#### OneLake endpoint
441-
In your Microsoft Fabric instance, you can find the endpoint information as shown in this screenshot:
441+
This screenshot shows how you can find endpoint information in your Microsoft Fabric instance:
442442

443443
:::image type="content" source="media/how-to-datastore/fabric-endpoint.png" alt-text="Screenshot that shows Fabric endpoint details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-endpoint.png":::
444444

445445
#### OneLake artifact name
446-
In your Microsoft Fabric instance, you can find the artifact information as shown in this screenshot. You can use either a GUID value, or a "friendly name" to create an Azure Machine Learning OneLake datastore, as shown in this screenshot:
446+
This screenshot shows how you can find the artifact information in your Microsoft Fabric instance. The screenshot also shows how you can either use a GUID value or a "friendly name" to create an Azure Machine Learning OneLake datastore:
447447

448448
:::image type="content" source="media/how-to-datastore/fabric-lakehouse.png" alt-text="Screenshot showing how to get Fabric LH artifact details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-lakehouse.png":::
449449

@@ -558,4 +558,4 @@ az ml datastore create --file my_onelakesp_datastore.yml
558558
- [Access data in a job](how-to-read-write-data-v2.md#access-data-in-a-job)
559559
- [Create and manage data assets](how-to-create-data-assets.md#create-and-manage-data-assets)
560560
- [Import data assets (preview)](how-to-import-data-assets.md#import-data-assets-preview)
561-
- [Data administration](how-to-administrate-data-authentication.md#data-administration)
561+
- [Data administration](how-to-administrate-data-authentication.md#data-administration)

0 commit comments

Comments
 (0)