You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Customer intent: As an experienced Python developer, I need to make my data in Azure storage available to my remote compute resource, to train my machine learning models.
15
15
---
@@ -29,7 +29,7 @@ In this article, learn how to connect to Azure data storage services with Azure
29
29
- An Azure Machine Learning workspace.
30
30
31
31
> [!NOTE]
32
-
> Azure Machine Learning datastores do **not** create the underlying storage account resources. Instead, they link an **existing** storage account for Azure Machine Learning use. Azure Machine Learning datastores are not required for this. If you have access to the underlying data, you can use storage URIs directly.
32
+
> Azure Machine Learning datastores do **not** create the underlying storage account resources. Instead, they link an **existing** storage account for Azure Machine Learning use. This does not require Azure Machine Learning datastores. If you have access to the underlying data, you can use storage URIs directly.
Create the following YAML file (updating the values):
381
+
Create this YAML file (updating the values):
382
382
383
383
```yaml
384
384
# my_adls_datastore.yml
@@ -396,7 +396,7 @@ az ml datastore create --file my_adls_datastore.yml
396
396
```
397
397
398
398
# [CLI: Service principal](#tab/cli-adlsgen1-sp)
399
-
Create the following YAML file (updating the values):
399
+
Create this YAML file (updating the values):
400
400
401
401
```yaml
402
402
# my_adls_datastore.yml
@@ -422,9 +422,9 @@ az ml datastore create --file my_adls_datastore.yml
422
422
423
423
## Create a OneLake (Microsoft Fabric) datastore (preview)
424
424
425
-
This section describes the creation of a OneLake datastore using various options. The OneLake datastore is part of Microsoft Fabric. At this time, Azure Machine Learning supports connecting to Microsoft Fabric Lakehouse artifacts that includes folders/ files and Amazon S3 shortcuts. For more information about Lakehouse, see[What is a lakehouse in Microsoft Fabric](/fabric/data-engineering/lakehouse-overview).
425
+
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Azure Machine Learning supports connection to Microsoft Fabric Lakehouse artifacts that include folders/ files and Amazon S3 shortcuts. For more information about Lakehouse, visit[What is a lakehouse in Microsoft Fabric](/fabric/data-engineering/lakehouse-overview).
426
426
427
-
To create a OneLake datastore, you need
427
+
OneLake datastore creation requires
428
428
429
429
- Endpoint
430
430
- Fabric workspace name or GUID
@@ -438,12 +438,12 @@ In your Microsoft Fabric instance, you can find the workspace information as sho
438
438
:::image type="content" source="media/how-to-datastore/fabric-workspace.png" alt-text="Screenshot that shows Fabric Workspace details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-workspace.png":::
439
439
440
440
#### OneLake endpoint
441
-
In your Microsoft Fabric instance, you can find the endpoint information as shown in this screenshot:
441
+
This screenshot shows how you can find endpoint information in your Microsoft Fabric instance:
442
442
443
443
:::image type="content" source="media/how-to-datastore/fabric-endpoint.png" alt-text="Screenshot that shows Fabric endpoint details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-endpoint.png":::
444
444
445
445
#### OneLake artifact name
446
-
In your Microsoft Fabric instance, you can find the artifact information as shown in this screenshot. You can use either a GUID value, or a "friendly name" to create an Azure Machine Learning OneLake datastore, as shown in this screenshot:
446
+
This screenshot shows how you can find the artifact information in your Microsoft Fabric instance. The screenshot also shows how you can either use a GUID value or a "friendly name" to create an Azure Machine Learning OneLake datastore:
447
447
448
448
:::image type="content" source="media/how-to-datastore/fabric-lakehouse.png" alt-text="Screenshot showing how to get Fabric LH artifact details in Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-lakehouse.png":::
449
449
@@ -558,4 +558,4 @@ az ml datastore create --file my_onelakesp_datastore.yml
558
558
-[Access data in a job](how-to-read-write-data-v2.md#access-data-in-a-job)
559
559
-[Create and manage data assets](how-to-create-data-assets.md#create-and-manage-data-assets)
560
560
-[Import data assets (preview)](how-to-import-data-assets.md#import-data-assets-preview)
0 commit comments