You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-access-data.md
+7-7Lines changed: 7 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -70,7 +70,7 @@ We recommend creating a datastore for an [Azure Blob container](https://docs.mic
70
70
When you create a workspace, an Azure blob container and an Azure file share are automatically registered to the workspace. They're named `workspaceblobstore` and `workspacefilestore`, respectively. `workspaceblobstore` is used to store workspace artifacts and your machine learning experiment logs. `workspacefilestore` is used to store notebooks and R scripts authorized via [compute instance](https://docs.microsoft.com/azure/machine-learning/concept-compute-instance#accessing-files). The `workspaceblobstore` container is set as the default datastore.
71
71
72
72
> [!IMPORTANT]
73
-
> Azure Machine Learning designer (preview) will create a datastore named **azureml_globaldatasets** automatically when you open a sample in the designer homepage. This datastore only contains sample datasets. Please **do not** use this datastore for any confidential data access!
73
+
> Azure Machine Learning designer (preview) will create a datastore named **azureml_globaldatasets** automatically when you open a sample in the designer homepage. This datastore only contains sample datasets. Please **do not** use this datastore for any confidential data access.
74
74
> 
75
75
76
76
<aname="access"></a>
@@ -91,7 +91,7 @@ All the register methods are on the [`Datastore`](https://docs.microsoft.com/pyt
91
91
You can find the information that you need to populate the `register()` method on the [Azure portal](https://portal.azure.com).
92
92
Select **Storage Accounts** on the left pane, and choose the storage account that you want to register. The **Overview** page provides information such as the account name, container, and file share name.
93
93
94
-
* For authentication items, like account key or SAS token, go to **Account Keys** on the **Settings** pane.
94
+
* For authentication items, like account key or SAS token, go to **Access keys** on the **Settings** pane.
95
95
96
96
* For service principal items like, tenant ID and client ID, go to your **App registrations** and select which app you want to use. Its corresponding **Overview** page will contain these items.
97
97
@@ -104,13 +104,13 @@ The following examples show how to register an Azure blob container, an Azure fi
104
104
105
105
To register an Azure blob container as a datastore, use [`register_azure_blob-container()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-blob-container-workspace--datastore-name--container-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false--blob-cache-timeout-none--grant-workspace-access-false--subscription-id-none--resource-group-none-).
106
106
107
-
The following code creates and registers the `blob_datastore_name` datastore to the `ws` workspace. This datastore accesses the `my-container-name` blob container on the `my-account-name` storage account, by using the provided account key.
107
+
The following code creates and registers the `blob_datastore_name` datastore to the `ws` workspace. This datastore accesses the `my-container-name` blob container on the `my-account-name` storage account, by using the provided account access key.
108
108
109
109
```Python
110
110
blob_datastore_name='azblobsdk'# Name of the datastore to workspace
111
111
container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
112
112
account_name=os.getenv("BLOB_ACCOUNTNAME", "<my-account-name>") # Storage account name
To register an Azure file share as a datastore, use [`register_azure_file_share()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-file-share-workspace--datastore-name--file-share-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false-).
125
125
126
-
The following code creates and registers the `file_datastore_name` datastore to the `ws` workspace. This datastore accesses the `my-fileshare-name` file share on the `my-account-name` storage account, by using the provided account key.
126
+
The following code creates and registers the `file_datastore_name` datastore to the `ws` workspace. This datastore accesses the `my-fileshare-name` file share on the `my-account-name` storage account, by using the provided account access key.
127
127
128
128
```Python
129
129
file_datastore_name='azfilesharesdk'# Name of the datastore to workspace
130
130
file_share_name=os.getenv("FILE_SHARE_CONTAINER", "<my-fileshare-name>") # Name of Azure file share container
131
131
account_name=os.getenv("FILE_SHARE_ACCOUNTNAME", "<my-account-name>") # Storage account name
@@ -178,7 +178,7 @@ Create a new datastore in a few steps in Azure Machine Learning studio:
178
178
179
179
You can find the information that you need to populate the form on the [Azure portal](https://portal.azure.com). Select **Storage Accounts** on the left pane, and choose the storage account that you want to register. The **Overview** page provides information such as the account name, container, and file share name.
180
180
181
-
* For authentication items, like account key or SAS token, go to **Account Keys** on the **Settings** pane.
181
+
* For authentication items, like account key or SAS token, go to **Access keys** on the **Settings** pane.
182
182
183
183
* For service principal items like, tenant ID and client ID, go to your **App registrations** and select which app you want to use. Its corresponding **Overview** page will contain these items.
0 commit comments