You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/service/how-to-monitor-data-drift.md
+1-2Lines changed: 1 addition & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -128,7 +128,6 @@ There are multiple ways to view drift metrics:
128
128
129
129
* Use the `RunDetails`[Jupyter widget](https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py).
130
130
* Use the [`get_metrics()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py#get-metrics-name-none--recursive-false--run-type-none--populate-false-) functionon any `datadrift` run object.
131
-
* View the metrics in the Azure portal on your model.
132
131
* View the metrics from the **Models** section of your [workspace landing page (preview)](https://ml.azure.com).
133
132
134
133
The following Python example demonstrates how to plot relevant data drift metrics. You can use the returned metrics to build custom visualizations:
@@ -154,7 +153,7 @@ datadrift.enable_schedule()
154
153
datadrift.disable_schedule()
155
154
```
156
155
157
-
The configuration of the data drift detector can be seen on the model details pagein your [workspace landing page (preview)](https://ml.azure.com).
156
+
The configuration of the data drift detector can be seen under **Models**in the **Details** tabin your [workspace landing page (preview)](https://ml.azure.com).
158
157
159
158

0 commit comments