Skip to content

Commit 2ec07f1

Browse files
committed
minor fixes
1 parent 764e317 commit 2ec07f1

File tree

1 file changed

+1
-2
lines changed

1 file changed

+1
-2
lines changed

articles/machine-learning/service/how-to-monitor-data-drift.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,6 @@ There are multiple ways to view drift metrics:
128128

129129
* Use the `RunDetails`[Jupyter widget](https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py).
130130
* Use the [`get_metrics()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py#get-metrics-name-none--recursive-false--run-type-none--populate-false-) function on any `datadrift` run object.
131-
* View the metrics in the Azure portal on your model.
132131
* View the metrics from the **Models** section of your [workspace landing page (preview)](https://ml.azure.com).
133132

134133
The following Python example demonstrates how to plot relevant data drift metrics. You can use the returned metrics to build custom visualizations:
@@ -154,7 +153,7 @@ datadrift.enable_schedule()
154153
datadrift.disable_schedule()
155154
```
156155

157-
The configuration of the data drift detector can be seen on the model details page in your [workspace landing page (preview)](https://ml.azure.com).
156+
The configuration of the data drift detector can be seen under **Models** in the **Details** tab in your [workspace landing page (preview)](https://ml.azure.com).
158157

159158
![Azure portal Data Drift](media/how-to-monitor-data-drift/drift-config.png)
160159

0 commit comments

Comments
 (0)