Skip to content

Commit 360af40

Browse files
committed
Merge branch 'master' of https://github.com/MicrosoftDocs/azure-docs-pr into lbregionmove
2 parents 4d77397 + 6857584 commit 360af40

File tree

2 files changed

+102
-70
lines changed

2 files changed

+102
-70
lines changed

articles/ansible/index.yml

Lines changed: 90 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -1,64 +1,94 @@
1-
### YamlMime:YamlDocument
2-
documentType: LandingData
1+
### YamlMime:Landing
2+
33
title: Ansible on Azure documentation
4+
summary: Learn how to use Ansible to automate cloud provisioning, configuration management, and application deployments.
5+
46
metadata:
5-
title: Ansible on Azure documentation - Tutorials, samples, reference, and resources
7+
title: Ansible on Azure documentation
68
description: Learn how to use Ansible to automate cloud provisioning, configuration management, and application deployments.
7-
ms.service: azure
8-
keywords: ansible, azure, devops, tutorials, samples, reference
9-
author: tomarchermsft
10-
manager: jeconnoc
11-
ms.author: tarcher
9+
services: azure
10+
ms.service: ansible
1211
ms.topic: landing-page
13-
ms.date: 04/22/2019
14-
abstract:
15-
description: Use <a href="https://www.ansible.com">Ansible</a> to automate cloud provisioning, configuration management, and application deployments.
16-
sections:
17-
- title: 5-Minute Quickstarts
18-
items:
19-
- type: paragraph
20-
text: Install Ansible and use it to create and manage Linux virtual machines in Azure.
21-
- type: list
22-
style: icon48
23-
items:
24-
- image:
25-
src: /azure/media/index/azure_dev-9.svg
26-
text: Install Ansible
27-
href: /azure/virtual-machines/linux/ansible-install-configure?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
28-
- image:
29-
src: /azure/media/index/VirtualMachine.svg
30-
text: Configure a Linux VM
31-
href: /azure/virtual-machines/linux/ansible-create-vm?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
32-
- image:
33-
src: /azure/media/index/VirtualMachine.svg
34-
text: Manage a Linux VM
35-
href: /azure/virtual-machines/linux/ansible-manage-linux-vm?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
36-
- title: Step-by-Step Tutorials
37-
items:
38-
- type: paragraph
39-
text: Learn how to use Ansible to create and manage Azure compute, network, and storage infrastructure.
40-
- type: list
41-
style: unordered
42-
items:
43-
- html: <a href="/azure/virtual-machines/linux/ansible-create-complete-vm?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json">Create a Linux virtual machine, including virtual network, public IP address, and virtual network interface card.</a>
44-
- html: <a href="./ansible-run-playbook-in-cloudshell">Run Ansible with Bash in Azure Cloud Shell.</a>
45-
- html: <a href="./ansible-manage-azure-dynamic-inventories">Create and manage a dynamic inventory of your Azure resources.</a>
46-
- html: <a href="./ansible-create-configure-vmss">Create and manage virtual machine scale sets in Azure.</a>
47-
- html: <a href="./ansible-deploy-app-vmss">Deploy applications to virtual machine scale sets in Azure.</a>
48-
- html: <a href="./ansible-create-configure-aks">Create and manage Azure Kubernetes Service clusters.</a>
49-
- html: <a href="./ansible-create-configure-application-gateway">Manage web traffic with an Azure application gateway.</a>
50-
- html: <a href="./ansible-auto-scale-vmss">Automatically scale virtual machine scale sets in Azure using Ansible.</a>
51-
- html: <a href="./ansible-scale-azure-web-apps">Scale Azure App Service web apps by using Ansible.</a>
52-
- html: <a href="./ansible-create-configure-route-table">Create, change, or delete an Azure route table using Ansible.</a>
53-
- title: Reference
54-
items:
55-
- type: list
56-
style: cards
57-
className: cardsD
58-
items:
59-
- title: Playbook roles
60-
html: <p><a href="https://galaxy.ansible.com/Azure/azure_preview_modules/">azure_preview_module</a></p>
61-
- title: Releases and features
62-
html: <p><a href="./ansible-matrix.md">Features matrix for modules and roles</a></p>
63-
- title: Tools
64-
html: <p><a href="https://marketplace.visualstudio.com/items?itemName=vscoss.vscode-ansible">Visual Studio Code extension for Ansible</a></p>
12+
author: TomArcherMsft
13+
ms.author: tarcher
14+
ms.date: 09/11/2019
15+
16+
landingContent:
17+
# Card
18+
- title: About Ansible on Azure
19+
linkLists:
20+
- linkListType: overview
21+
links:
22+
- text: About Ansible on Azure
23+
url: ansible-overview.md
24+
- linkListType: architecture
25+
links:
26+
- text: Ansible module and version matrix
27+
url: ansible-matrix.md
28+
29+
# Card
30+
- title: Install and Configure Ansible
31+
linkLists:
32+
- linkListType: quickstart
33+
links:
34+
- text: Deploy Ansible solution template to CentOS
35+
url: ansible-deploy-solution-template.md
36+
- text: Install Ansible on Linux virtual machines
37+
url: /azure/virtual-machines/linux/ansible-install-configure
38+
- text: Run playbooks in Cloud Shell
39+
url: ansible-run-playbook-in-cloudshell.md
40+
- linkListType: tutorial
41+
links:
42+
- text: Configure a dynamic inventory
43+
url: ansible-manage-azure-dynamic-inventories.md
44+
- linkListType: download
45+
links:
46+
- text: Visual Studio Code extension for Ansible
47+
url: https://marketplace.visualstudio.com/items?itemName=vscoss.vscode-ansible
48+
# Card
49+
- title: Manage Virtual Machines
50+
linkLists:
51+
- linkListType: quickstart
52+
links:
53+
- text: Configure Linux virtual machines
54+
url: /azure/virtual-machines/linux/ansible-create-vm?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
55+
- text: Manage Linux virtual machines
56+
url: /azure/virtual-machines/linux/ansible-manage-linux-vm?toc=%2Fen-us%2Fazure%2Fansible%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
57+
58+
# Card
59+
- title: Manage Virtual Machine Scale Sets
60+
linkLists:
61+
- linkListType: tutorial
62+
links:
63+
- text: Configure virtual machine scale sets
64+
url: ansible-create-configure-vmss.md
65+
- text: Deploy applications to virtual machine scale sets
66+
url: ansible-deploy-app-vmss.md
67+
- text: Automatically scale virtual machine scale sets
68+
url: ansible-auto-scale-vmss.md
69+
- text: Update custom image
70+
url: ansible-vmss-update-image.md
71+
72+
# Card
73+
- title: Manage Virtual Networks
74+
linkLists:
75+
- linkListType: tutorial
76+
links:
77+
- text: Configure peering
78+
url: ansible-vnet-peering-configure.md
79+
- text: Configure route tables
80+
url: ansible-create-configure-route-table.md
81+
82+
# Card
83+
- title: Manage AKS
84+
linkLists:
85+
- linkListType: tutorial
86+
links:
87+
- text: Configure AKS clusters
88+
url: ansible-create-configure-aks.md
89+
- text: Configure Azure CNI networking
90+
url: ansible-aks-configure-cni-networking.md
91+
- text: Configure kubenet networking
92+
url: ansible-aks-configure-kubenet-networking.md
93+
- text: Configure RBAC roles in AKS cluster
94+
url: ansible-aks-configure-rbac.md

articles/machine-learning/service/how-to-create-register-datasets.md

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -41,8 +41,10 @@ To create and work with datasets, you need:
4141
4242
## Dataset Types
4343

44-
Datasets are categorized into various types based on how users consume them in training. List of Dataset types:
45-
* [TabularDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) represents data in a tabular format by parsing the provided file or list of files. This provides you with the ability to materialize the data into a pandas DataFrame. A `TabularDataset` object can be created from csv, tsv, parquet files, SQL query results etc. For a complete list, please visit our [documentation](https://aka.ms/tabulardataset-api-reference). A timestamp can be specified from a column in the data or the path pattern data is stored in to enable a timeseries trait, which allows for easy and efficient filtering by time.
44+
Datasets are categorized into two types based on how users consume them in training.
45+
46+
* [TabularDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) represents data in a tabular format by parsing the provided file or list of files. This provides you with the ability to materialize the data into a pandas DataFrame. A `TabularDataset` object can be created from csv, tsv, parquet files, SQL query results etc. For a complete list, please visit our [documentation](https://aka.ms/tabulardataset-api-reference).
47+
4648
* [FileDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.file_dataset.filedataset?view=azure-ml-py) references single or multiple files in your datastores or public urls. This provides you with the ability to download or mount the files to your compute. The files can be of any format, which enables a wider range of machine learning scenarios including deep learning.
4749

4850
To find out more about upcoming API changes, see [here](https://aka.ms/tabular-dataset).
@@ -75,11 +77,11 @@ datastore = Datastore.get(workspace, datastore_name)
7577

7678
### Create TabularDatasets
7779

78-
TabularDatasets can be created via the SDK or by using the workspace landing page (preview).
80+
TabularDatasets can be created via the SDK or by using the workspace landing page (preview). A timestamp can be specified from a column in the data or the path pattern data is stored in to enable a timeseries trait, which allows for easy and efficient filtering by time.
7981

80-
#### SDK
82+
#### Using the SDK
8183

82-
Use the `from_delimited_files()` method on `TabularDatasetFactory` class to read files in csv or tsv format, and create an unregistered TabularDataset. If you are reading from multiple files, results will be aggregated into one tabular representation.
84+
Use the [`from_delimited_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header--promoteheadersbehavior-all-files-have-same-headers--3---partition-format-none-) method on `TabularDatasetFactory` class to read files in csv or tsv format, and create an unregistered TabularDataset. If you are reading from multiple files, results will be aggregated into one tabular representation.
8385

8486
```Python
8587
# create a TabularDataset from multiple paths in datastore
@@ -104,8 +106,7 @@ titanic_ds.take(3).to_pandas_dataframe()
104106
1|2|1|1|Cumings, Mrs. John Bradley (Florence Briggs Th...|female|38.0|1|0|PC 17599|71.2833|C85|C
105107
2|3|1|3|Heikkinen, Miss. Laina|female|26.0|0|0|STON/O2. 3101282|7.9250||S
106108

107-
108-
Use the `with_timestamp_columns()` method on `TabularDataset` class to enable easy and efficient filtering by time. More examples and details can be found [here](http://aka.ms/azureml-tsd-notebook).
109+
Use the [`with_timestamp_columns()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-fine-grain-timestamp--coarse-grain-timestamp-none--validate-false-) method on `TabularDataset` class to enable easy and efficient filtering by time. More examples and details can be found [here](http://aka.ms/azureml-tsd-notebook).
109110

110111
```Python
111112
# create a TabularDataset with timeseries trait
@@ -124,7 +125,7 @@ data_slice = dataset.time_between(datetime(2019, 1, 1), datetime(2019, 2, 1))
124125
data_slice = dataset.time_recent(timedelta(weeks=1, days=1))
125126
```
126127

127-
#### Workspace landing page
128+
#### Using the workspace landing page
128129

129130
Sign in to the [workspace landing page](https://ml.azure.com) to create a dataset via the web experience. Currently, the workspace landing page only supports the creation of TabularDatasets.
130131

@@ -136,7 +137,7 @@ First, select **Datasets** in the **Assets** section of the left pane. Then, se
136137

137138
### Create FileDatasets
138139

139-
Use the `from_files()` method on `FileDatasetFactory` class to load files in any format, and create an unregistered FileDataset.
140+
Use the [`from_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-) method on `FileDatasetFactory` class to load files in any format, and create an unregistered FileDataset.
140141

141142
```Python
142143
# create a FileDataset from multiple paths in datastore
@@ -154,11 +155,12 @@ web_paths = [
154155
]
155156
mnist_ds = Dataset.File.from_files(path=web_paths)
156157
```
158+
157159
## Register datasets
158160

159161
To complete the creation process, register your datasets with workspace:
160162

161-
Use the `register()` method to register datasets to your workspace so they can be shared with others and reused across various experiments.
163+
Use the [`register()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py#register-workspace--name--description-none--tags-none--visible-true--exist-ok-false--update-if-exist-false-) method to register datasets to your workspace so they can be shared with others and reused across various experiments.
162164

163165
```Python
164166
titanic_ds = titanic_ds.register(workspace = workspace,

0 commit comments

Comments
 (0)