Skip to content

Commit 366c549

Browse files
committed
fix broken link and move images into new folder
1 parent 8a6fcb3 commit 366c549

File tree

6 files changed

+5
-5
lines changed

6 files changed

+5
-5
lines changed

articles/machine-learning/concept-online-deployment-model-specification.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ In Azure Machine Learning, after you create your deployment, the environment var
2929

3030
We use the following local folder structure to illustrate how you can specify models that are available locally on your machine in an online deployment.
3131

32-
:::image type="content" source="media/how-to-deploy-online-endpoints/multi-models-1.png" alt-text="A screenshot showing a local folder structure containing multiple models." lightbox="media/how-to-deploy-online-endpoints/multi-models-1.png":::
32+
:::image type="content" source="media/concept-online-deployment-model-specification/multi-models-1.png" alt-text="A screenshot showing a local folder structure containing multiple models." lightbox="media/concept-online-deployment-model-specification/multi-models-1.png":::
3333

3434
### Deployment configuration with a single local model
3535

@@ -87,7 +87,7 @@ After you create your deployment, the environment variable `AZUREML_MODEL_DIR` p
8787

8888
For this example, the contents of the `AZUREML_MODEL_DIR` folder look like this:
8989

90-
:::image type="content" source="media/how-to-deploy-online-endpoints/multi-models-2.png" alt-text="A screenshot showing the folder structure of the storage location for multiple models." lightbox="media/how-to-deploy-online-endpoints/multi-models-2.png":::
90+
:::image type="content" source="media/concept-online-deployment-model-specification/multi-models-2.png" alt-text="A screenshot showing the folder structure of the storage location for multiple models." lightbox="media/concept-online-deployment-model-specification/multi-models-2.png":::
9191

9292
Within your scoring script (`score.py`), you can load your models in the `init()` function. The following code loads the `sample_m1.pkl` model:
9393

@@ -123,11 +123,11 @@ instance_count: 1
123123

124124
For this example, consider that `local-multimodel:3` contains the following model artifacts, which can be viewed from the **Models** tab in the Azure Machine Learning studio:
125125

126-
:::image type="content" source="media/how-to-deploy-online-endpoints/multi-models-3.png" alt-text="A screenshot of a folder structure showing the model artifacts of a registered model." lightbox="media/how-to-deploy-online-endpoints/multi-models-3.png":::
126+
:::image type="content" source="media/concept-online-deployment-model-specification/multi-models-3.png" alt-text="A screenshot of a folder structure showing the model artifacts of a registered model." lightbox="media/concept-online-deployment-model-specification/multi-models-3.png":::
127127

128128
After you create your deployment, the environment variable `AZUREML_MODEL_DIR` points to the storage location within Azure where your models are stored. For example, `/var/azureml-app/azureml-models/local-multimodel/3` contains the models and the file structure. `AZUREML_MODEL_DIR` points to the folder containing the root of the model artifacts. Based on this example, the contents of the `AZUREML_MODEL_DIR` folder look like this:
129129

130-
:::image type="content" source="media/how-to-deploy-online-endpoints/multi-models-4.png" alt-text="A screenshot of the folder structure showing multiple models." lightbox="media/how-to-deploy-online-endpoints/multi-models-4.png":::
130+
:::image type="content" source="media/concept-online-deployment-model-specification/multi-models-4.png" alt-text="A screenshot of the folder structure showing multiple models." lightbox="media/concept-online-deployment-model-specification/multi-models-4.png":::
131131

132132
Within your scoring script (`score.py`), you can load your models in the `init()` function. For example, load the `diabetes.sav` model:
133133

articles/machine-learning/reference-managed-online-endpoints-vm-sku-list.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ The following table shows the virtual machine (VM) stock keeping units (SKUs) th
3030
| X-Large | Standard_D32a_v4 </br> Standard_D32as_v4 </br> Standard_D48a_v4 </br> Standard_D48as_v4 </br> Standard_D64a_v4 </br> Standard_D64as_v4 </br> Standard_D96a_v4 </br> Standard_D96as_v4 | Standard_F32s_v2 <br/> Standard_F48s_v2 <br/> Standard_F64s_v2 <br/> Standard_F72s_v2 <br/> Standard_FX24mds <br/> Standard_FX36mds <br/> Standard_FX48mds | Standard_E32s_v3 <br/> Standard_E48s_v3 <br/> Standard_E64s_v3 | Standard_NC48ads_A100_v4 </br> Standard_NC96ads_A100_v4 </br> Standard_ND96asr_v4 </br> Standard_ND96amsr_A100_v4 </br> Standard_ND40rs_v2 |
3131

3232
> [!CAUTION]
33-
> `Standard_DS1_v2` and `Standard_F2s_v2` may be too small for bigger models and may lead to container termination due to insufficient memory, not enough space on the disk, or probe failure as it takes too long to initiate the container. If you face [OutOfQuota errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-outofquota) or [ReourceNotReady errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-resourcenotready), try bigger VM SKUs. If you want to reduce the cost of deploying multiple models with managed online endpoint, see [the example for multi models](concept-endpoints-online.md#use-multiple-local-models-in-a-deployment).
33+
> `Standard_DS1_v2` and `Standard_F2s_v2` may be too small for bigger models and may lead to container termination due to insufficient memory, not enough space on the disk, or probe failure as it takes too long to initiate the container. If you face [OutOfQuota errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-outofquota) or [ReourceNotReady errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-resourcenotready), try bigger VM SKUs. If you want to reduce the cost of deploying multiple models with managed online endpoint, see [Deployment configuration with several local models](concept-online-deployment-model-specification.md#deployment-configuration-with-several-local-models).
3434
3535
> [!NOTE]
3636
> We recommend having more than 3 instances for deployments in production scenarios. In addition, Azure Machine Learning reserves 20% of your compute resources for performing upgrades on some VM SKUs as described in [Virtual machine quota allocation for deployment](how-to-manage-quotas.md#virtual-machine-quota-allocation-for-deployment). VM SKUs that are exempted from this extra quota reservation are listed below:

0 commit comments

Comments
 (0)