1
- # ## YamlMime:Hub
1
+ # ## YamlMime:Landing
2
2
3
3
title : Azure Machine Learning documentation
4
4
summary : Learn how to train and deploy models and manage the ML lifecycle (MLOps) with Azure Machine Learning. Tutorials, code examples, API references, and more.
@@ -10,126 +10,110 @@ metadata:
10
10
services : machine-learning
11
11
ms.service : machine-learning
12
12
ms.subservice : core
13
- ms.topic : hub -page
13
+ ms.topic : landing -page
14
14
ms.collection : collection
15
15
ms.author : sgilley
16
16
author : sdgilley
17
- ms.date : 10/21/2021
17
+ ms.date : 02/04/2022
18
18
ms.custom : jordan-changes
19
19
20
- # highlightedContent section
21
- highlightedContent :
22
- # itemType: architecture | concept | deploy | download | get-started | how-to-guide | learn | overview | quickstart | reference | sample | tutorial | video | whats-new
23
- items :
24
- # Card
25
- - title : What is Azure Machine Learning?
26
- itemType : overview
27
- url : overview-what-is-azure-machine-learning.md
28
- # Card
29
- - title : Set up resources
30
- itemType : get-started
31
- url : quickstart-create-resources.md
32
- # Card
33
- - title : ' Preview: Train models with v2 CLI'
34
- itemType : tutorial
35
- url : how-to-train-cli.md
36
- # Card
37
- - title : Architecture & terms
38
- itemType : overview
39
- url : concept-azure-machine-learning-architecture.md
40
- # Card
41
- - title : ' Day 1: Get started with Python'
42
- itemType : get-started
43
- url : tutorial-1st-experiment-hello-world.md
44
- # Card
45
- - title : " Migrate from ML Studio (classic)"
46
- itemType : how-to-guide
47
- url : migrate-overview.md
20
+ # linkListType: architecture | concept | deploy | download | get-started | how-to-guide | learn | overview | quickstart | reference | tutorial | video | whats-new
48
21
49
- conceptualContent :
50
- # Supports up to 3 sections
51
- # itemType: architecture | concept | deploy | download | get-started | how-to-guide | learn | overview | quickstart | reference | sample | tutorial | video | whats-new
52
- items :
53
- # Card
54
- - title : Train models
22
+ landingContent :
23
+ - title : ' Overview'
24
+ linkLists :
25
+ - linkListType : overview
26
+ links :
27
+ - text : " What is Azure Machine Learning?"
28
+ url : overview-what-is-azure-machine-learning.md
29
+ - text : " What is Azure Machine Learning studio?"
30
+ url : overview-what-is-machine-learning-studio.md
31
+ - text : Architecture & terms
32
+ url : concept-azure-machine-learning-architecture.md
33
+ # Card
34
+ - title : Get Started
35
+ linkLists :
36
+ - linkListType : tutorial
37
+ links :
38
+ - text : Set up resources
39
+ url : quickstart-create-resources.md
40
+ - text : " Train with the v2 CLI (preview)"
41
+ url : how-to-train-cli.md
42
+ - text : " Day 1: Get started with Python"
43
+ url : tutorial-1st-experiment-hello-world.md
44
+ - text : " Migrate from ML Studio (classic)"
45
+ url : migrate-overview.md
46
+ # Card
47
+ - title : Train models
48
+ linkLists :
49
+ - linkListType : how-to-guide
50
+ links :
51
+ - text : Run training code in the cloud (v2 CLI preview)
52
+ url : how-to-train-cli.md
53
+ - text : Train and deploy a model in Jupyter notebook
54
+ url : tutorial-train-deploy-notebook.md
55
+ - text : Tune hyperparameters for model training
56
+ url : how-to-tune-hyperparameters.md
57
+ - text : Build pipelines from reuseable components
58
+ url : how-to-create-machine-learning-pipelines.md
59
+ - text : " AutoML: Train a classification model"
60
+ url : tutorial-first-experiment-automated-ml.md
61
+ # Card
62
+ - title : Deploy models
63
+ linkLists :
64
+ - linkListType : deploy
65
+ links :
66
+ - text : Streamline model deployment with endpoints (preview)
67
+ url : concept-endpoints.md
68
+ - text : Real-time scoring with a managed endpoint (preview)
69
+ url : how-to-deploy-managed-online-endpoints.md
70
+ - text : Batch scoring with managed endpoints (preview)
71
+ url : how-to-use-batch-endpoint.md
72
+ - text : Options for deploying models without using endpoints
73
+ url : how-to-deploy-and-where.md
74
+ # Card
75
+ - title : " Manage the ML lifecycle (MLOps)"
76
+ linkLists :
77
+ - linkListType : how-to-guide
55
78
links :
56
- - url : how-to-train-cli.md
57
- itemType : how-to-guide
58
- text : Run training code in the cloud (v2 CLI preview)
59
- - url : how-to-tune-hyperparameters.md
60
- itemType : how-to-guide
61
- text : Tune hyperparameters for model training
62
- - url : how-to-create-machine-learning-pipelines.md
63
- itemType : how-to-guide
64
- text : Build pipelines from reuseable components
65
- - url : tutorial-first-experiment-automated-ml.md
66
- itemType : tutorial
67
- text : ' AutoML: Train a classification model'
68
-
69
- # Card
70
- - title : Deploy models
71
- links :
72
- - url : concept-endpoints.md
73
- itemType : concept
74
- text : Streamline model deployment with endpoints (preview)
75
- - url : how-to-deploy-managed-online-endpoints.md
76
- itemType : how-to-guide
77
- text : Real-time scoring with a managed endpoint (preview)
78
- - url : how-to-use-batch-endpoint.md
79
- itemType : how-to-guide
80
- text : Batch scoring with managed endpoints (preview)
81
- - url : how-to-deploy-and-where.md
82
- itemType : how-to-guide
83
- text : Options for deploying models without using endpoints
84
-
85
- # Card
86
- - title : Manage the ML lifecycle (MLOps)
87
- links :
88
- - url : how-to-track-monitor-analyze-runs.md
89
- itemType : how-to-guide
90
- text : Track, monitor, analyze training runs
91
- - url : concept-model-management-and-deployment.md
92
- itemType : concept
93
- text : Model management, deployment, lineage & monitoring
94
- - url : how-to-cicd-data-ingestion.md
95
- itemType : how-to-guide
96
- text : DevOps for a data ingestion pipeline
97
- # Card
98
- - title : Security for ML projects
99
- links :
100
- - url : tutorial-create-secure-workspace.md
101
- itemType : tutorial
102
- text : Create a secure workspace
103
- - url : how-to-access-data.md
104
- itemType : how-to-guide
105
- text : Connect to data sources
106
- - url : concept-enterprise-security.md
107
- itemType : concept
108
- text : Enterprise security & governance
109
- # Card
110
- - title : Reference
111
- links :
112
- - url : /python/api/overview/azure/ml/
113
- itemType : reference
114
- text : Python SDK
115
- - url : /rest/api/azureml/
116
- itemType : reference
117
- text : REST API
118
- - url : /cli/azure/ml/
119
- itemType : reference
120
- text : V2 CLI (preview)
121
- - url : ./algorithm-module-reference/module-reference.md
122
- itemType : reference
123
- text : Algorithm & module reference
124
- # Card
125
- - title : Resources
79
+ - text : Track, monitor, analyze training runs
80
+ url : how-to-track-monitor-analyze-runs.md
81
+ - text : Model management, deployment, lineage & monitoring
82
+ url : concept-model-management-and-deployment.md
83
+ - text : DevOps for a data ingestion pipeline
84
+ url : how-to-cicd-data-ingestion.md
85
+ # Card
86
+ - title : " Security for ML projects"
87
+ linkLists :
88
+ - linkListType : how-to-guide
126
89
links :
127
- - url : https://github.com/Azure/azureml-examples/blob/main/python-sdk/README.md
128
- itemType : sample
129
- text : Python SDK code examples
130
- - url : https://github.com/Azure/azureml-examples/blob/main/cli/README.md
131
- itemType : sample
132
- text : v2 CLI code examples (preview)
133
- - url : ./classic/index.yml
134
- itemType : overview
135
- text : ML Studio (classic) documentation
90
+ - text : Create a secure workspace
91
+ url : tutorial-create-secure-workspace.md
92
+ - text : Connect to data sources
93
+ url : how-to-access-data.md
94
+ - text : Enterprise security & governance
95
+ url : concept-enterprise-security.md
96
+ # Card
97
+ - title : Reference docs
98
+ linkLists :
99
+ - linkListType : reference
100
+ links :
101
+ - text : Python SDK
102
+ url : /python/api/overview/azure/ml/
103
+ - text : REST API
104
+ url : /rest/api/azureml/
105
+ - text : V2 CLI (preview)
106
+ url : /cli/azure/ml/
107
+ - text : Algorithm & component reference
108
+ url : ./algorithm-module-reference/module-reference.md
109
+ # Card
110
+ - title : Resources
111
+ linkLists :
112
+ - linkListType : reference
113
+ links :
114
+ - text : Python SDK code examples
115
+ url : https://github.com/Azure/azureml-examples/blob/main/python-sdk/README.md
116
+ - text : v2 CLI code examples (preview)
117
+ url : https://github.com/Azure/azureml-examples/blob/main/cli/README.md
118
+ - text : ML Studio (classic) documentation
119
+ url : ./classic/index.yml
0 commit comments