Skip to content

Commit 3a576ac

Browse files
author
Larry Franks
committed
fixing errors
1 parent 495f70e commit 3a576ac

File tree

5 files changed

+13
-12
lines changed

5 files changed

+13
-12
lines changed

articles/machine-learning/concept-datastore.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,4 +48,4 @@ Azure Machine Learning Datastores support both credential-based and identity-bas
4848

4949
## Next steps
5050

51-
+ [How to create a datastore](how-to-datasore.md)
51+
+ [How to create a datastore](how-to-datastore.md)

articles/machine-learning/how-to-administrate-data-authentication.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ description: Learn how to manage data access and how to anthenticate in Azure Ma
55
services: machine-learning
66
ms.service: machine-learning
77
ms.subservice: enterprise-readiness
8-
ms.topic: how-do
8+
ms.topic: how-to
99
ms.author: xunwan
1010
author: xunwan
1111
ms.reviewer: larryfr

articles/machine-learning/how-to-create-register-data-assets.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -166,10 +166,10 @@ description: Data asset created from folder in cloud using wasbs URL.
166166
type: uri_folder
167167
path: wasbs://mainstorage9c05dabf5c924.blob.core.windows.net/azureml-blobstore-54887b46-3cb0-485b-bb15-62e7b5578ee6/example-data/
168168
```
169-
169+
---
170170

171171
### Consume registered URI Folder data assets in job
172-
# [Python-SDK](#tab/Python-SDK)
172+
173173
```python
174174
from azure.ai.ml.entities import Data, UriReference, JobInput, CommandJob
175175
from azure.ai.ml._constants import AssetTypes
@@ -198,7 +198,7 @@ returned_job.services["Studio"].endpoint
198198
```
199199

200200
### Register data as URI File type Data
201-
201+
# [Python-SDK](#tab/Python-SDK)
202202
```python
203203
from azure.ai.ml.entities import Data
204204
from azure.ai.ml._constants import AssetTypes
@@ -218,9 +218,9 @@ my_data = Data(
218218
219219
ml_client.data.create_or_update(my_data)
220220
```
221-
222-
You can also use CLI to register a URI File type Data as below example.
223221
# [CLI](#tab/CLI)
222+
You can also use CLI to register a URI File type Data as below example.
223+
224224
```cli
225225
> az ml data create -f <file-name>.yml
226226
```
@@ -249,7 +249,7 @@ description: Data asset created from folder in cloud using wasbs URL.
249249
type: uri_file
250250
path: wasbs://mainstorage9c05dabf5c924.blob.core.windows.net/azureml-blobstore-54887b46-3cb0-485b-bb15-62e7b5578ee6/paths/example-data.csv
251251
```
252-
252+
---
253253

254254
## MLTable
255255

@@ -302,7 +302,7 @@ transformations:
302302
empty_as_string: false
303303
header: from_first_file
304304
```
305-
305+
---
306306
The contents of the MLTable file specify the underlying data location (here a local path) and also the transforms to perform on the underlying data before materializing into a pandas/spark/dask data frame. The important part here's that the MLTable-artifact doesn't have any absolute paths, making it *self-contained*. All the information stored in one folder; regardless of whether that folder is stored on your local drive or in your cloud drive or on a public http server.
307307

308308
To consume the data in a job or interactive session, use `mltable`:

articles/machine-learning/how-to-datastore.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -396,7 +396,7 @@ store = AzureDataLakeGen1Datastore(
396396
ml_client.create_or_update(store)
397397
```
398398

399-
# [Python SDK: Service Principal](#tab/sdk-adls-sp)
399+
# [Python SDK: Service Principal](#tab/sdk-adlsgen1-sp)
400400

401401
```python
402402
from azure.ai.ml.entities import AzureDataLakeGen1Datastore
@@ -422,6 +422,7 @@ store = AzureDataLakeGen1Datastore(
422422

423423
ml_client.create_or_update(store)
424424
```
425+
425426
---
426427

427428
## Next steps

articles/machine-learning/v1/how-to-identity-based-data-access.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ To create datastores that use **credential-based** authentication, like access k
2929
There are two scenarios in which you can apply identity-based data access in Azure Machine Learning. These scenarios are a good fit for identity-based access when you're working with confidential data and need more granular data access management:
3030

3131
> [!WARNING]
32-
> Identity-based data access is not supported for [automated ML experiments](how-to-configure-auto-train.md).
32+
> Identity-based data access is not supported for [automated ML experiments](../how-to-configure-auto-train.md).
3333
3434
- Accessing storage services
3535
- Training machine learning models with private data
@@ -246,5 +246,5 @@ identity:
246246
## Next steps
247247
248248
* [Create an Azure Machine Learning dataset](how-to-create-register-datasets.md)
249-
* [Train with datasets](..how-to-train-with-datasets.md)
249+
* [Train with datasets](../how-to-train-with-datasets.md)
250250
* [Create a datastore with key-based data access](how-to-access-data.md)

0 commit comments

Comments
 (0)