Skip to content

Commit 3b9f361

Browse files
authored
Merge pull request #213186 from sdgilley/sdg-main-toc
move v1 articles to v1 TOC
2 parents cc27795 + e07bb3a commit 3b9f361

File tree

2 files changed

+62
-60
lines changed

2 files changed

+62
-60
lines changed

articles/machine-learning/toc.yml

Lines changed: 2 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -299,8 +299,6 @@
299299
href: how-to-manage-rest.md
300300
- name: How to move a workspace
301301
href: how-to-move-workspace.md
302-
- name: Link to Azure Synapse Analytics workspace
303-
href: how-to-link-synapse-ml-workspaces.md
304302
- name: Securely integrate Azure Synapse & Azure Machine Learning
305303
href: how-to-private-endpoint-integration-synapse.md
306304
- name: Workspace Diagnostics
@@ -333,7 +331,7 @@
333331
displayName: compute target, instance types, AKS, Arc Kubernetes
334332
href: how-to-manage-kubernetes-instance-types.md
335333
- name: Manage AzureML inference router
336-
displayNmae: AKS, Arc Kubernetes, inference, compute target
334+
displayName: AKS, Arc Kubernetes, inference, compute target
337335
href: how-to-kubernetes-inference-routing-azureml-fe.md
338336
- name: Secure inferencing environment
339337
displayName: AKS, Arc Kubernetes, HTTPS, private IP, no-public IP, private link, private endpoint, inference
@@ -378,9 +376,7 @@
378376
- name: Set up software environments
379377
displayName: pip, Conda, anaconda
380378
href: how-to-use-environments.md
381-
- name: Set input & output directories
382-
displayName: large data, write, experiment files, size limit
383-
href: how-to-save-write-experiment-files.md
379+
384380
- name: Set up VS Code extension
385381
displayName: Visual Studio Code, VSCode, debug, bugs, remote, compute, instance
386382
href: how-to-setup-vs-code.md
@@ -488,9 +484,6 @@
488484
- name: Use automated ML with Databricks
489485
displayName: automl
490486
href: how-to-configure-databricks-automl-environment.md
491-
- name: Auto-train a forecast model
492-
displayName: time series
493-
href: how-to-auto-train-forecast.md
494487
- name: Prep image data for computer vision models (Python)
495488
displayName: SDK, automl, image, datasets, conversion scripts, schema, image model
496489
href: how-to-prepare-datasets-for-automl-images.md
@@ -503,12 +496,6 @@
503496
- name: Auto-train a natural language processing model
504497
displayName: nlp, auto ML, automl, SDK
505498
href: how-to-auto-train-nlp-models.md
506-
- name: Data splits & cross-validation (Python)
507-
displayName: automl, feature engineering, feature importance
508-
href: how-to-configure-cross-validation-data-splits.md
509-
- name: Featurization in automated ML (Python)
510-
displayName: automl, feature engineering, feature importance, BERT
511-
href: how-to-configure-auto-features.md
512499
- name: Understand charts and metrics
513500
href: how-to-understand-automated-ml.md
514501
- name: Generate AutoML training code
@@ -518,8 +505,6 @@
518505
- name: Inference image models with ONNX model
519506
displayName: automl, image, image model, computer vision
520507
href: how-to-inference-onnx-automl-image-models.md
521-
- name: Troubleshoot automated ML
522-
href: how-to-troubleshoot-auto-ml.md
523508
- name: Deploy models
524509
items:
525510
- name: Online endpoints (real-time)

articles/machine-learning/v1/toc.yml

Lines changed: 60 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,6 @@
77
- name: Architecture & terms
88
displayName: architecture, concepts, definitions, glossary
99
href: concept-azure-machine-learning-architecture.md
10-
1110
- name: Upgrade to SDK v2
1211
items:
1312
- name: Upgrade overview
@@ -53,39 +52,10 @@
5352
- name: "Migrate endpoints"
5453
displayName: migration, v1, v2
5554
href: ../migrate-to-v2-deploy-endpoints.md
56-
57-
- name: Concepts (v1)
58-
items:
59-
- name: Model training
60-
displayName: run config, machine learning pipeline, ml pipeline, train model
61-
href: concept-train-machine-learning-model-v1.md
62-
- name: Work with data
63-
items:
64-
- name: Data access
65-
href: concept-data.md
66-
- name: Studio network data access
67-
href: concept-network-data-access.md
68-
- name: Automated ML overview
69-
displayName: automl, auto ml
70-
href: concept-automated-ml-v1.md
71-
- name: Manage the ML lifecycle (MLOps)
72-
items:
73-
- name: MLOps capabilities
74-
displayName: deploy, deployment, publish, production, operationalize, operationalization
75-
href: concept-model-management-and-deployment.md
76-
- name: MLflow
77-
href: concept-mlflow-v1.md
78-
- name: Manage resources VS Code
79-
displayName: vscode,resources
80-
href: ../how-to-manage-resources-vscode.md
81-
- name: Git integration
82-
displayName: github gitlab
83-
href: ../concept-train-model-git-integration.md
8455
- name: Tutorials (v1)
8556
expanded: true
8657
items:
8758
- name: Python get started (Day 1)
88-
expanded: true
8959
items:
9060
- name: 1. Run a Python script
9161
href: tutorial-1st-experiment-hello-world.md
@@ -112,22 +82,42 @@
11282
- name: Examples repository
11383
displayName: example, examples, jupyter, python, notebook, github
11484
href: https://github.com/azure/machinelearningnotebooks
115-
- name: How-to guides (v1)
85+
- name: Concepts (v1)
11686
items:
117-
- name: Install and set up the CLI (v1)
118-
displayName: azurecli, mlops
119-
href: reference-azure-machine-learning-cli.md
120-
- name: Manage workspace using CLI (v1)
121-
href: how-to-manage-workspace-cli.md
122-
- name: Set up software environments CLI (v1)
123-
href: how-to-use-environments.md
124-
- name: Use private Python packages
125-
displayName: pip, Conda, anaconda
126-
href: how-to-use-private-python-packages.md
87+
- name: Model training
88+
displayName: run config, machine learning pipeline, ml pipeline, train model
89+
href: concept-train-machine-learning-model-v1.md
90+
- name: Work with data
91+
items:
92+
- name: Data access
93+
href: concept-data.md
94+
- name: Studio network data access
95+
href: concept-network-data-access.md
96+
- name: Automated ML overview
97+
displayName: automl, auto ml
98+
href: concept-automated-ml-v1.md
99+
- name: Manage the ML lifecycle (MLOps)
100+
items:
101+
- name: MLOps capabilities
102+
displayName: deploy, deployment, publish, production, operationalize, operationalization
103+
href: concept-model-management-and-deployment.md
104+
- name: MLflow
105+
href: concept-mlflow-v1.md
106+
- name: Manage resources VS Code
107+
displayName: vscode,resources
108+
href: ../how-to-manage-resources-vscode.md
109+
- name: Git integration
110+
displayName: github gitlab
111+
href: ../concept-train-model-git-integration.md
112+
- name: Infrastructure & security (v1)
113+
items:
114+
127115
- name: Create & manage compute resources
128-
- name: Workspace Diagnostics
129-
href: how-to-workspace-diagnostic-api.md
130116
items:
117+
- name: Manage workspace using CLI (v1)
118+
href: how-to-manage-workspace-cli.md
119+
- name: Workspace Diagnostics
120+
href: how-to-workspace-diagnostic-api.md
131121
- name: Compute instance
132122
displayName: compute target
133123
href: how-to-create-manage-compute-instance.md
@@ -137,6 +127,8 @@
137127
- name: Azure Kubernetes Service
138128
displayName: AKS, inference
139129
href: how-to-create-attach-kubernetes.md
130+
- name: Link to Azure Synapse Analytics workspace
131+
href: ../how-to-link-synapse-ml-workspaces.md
140132
- name: Security
141133
items:
142134
- name: Use managed identities for access control
@@ -158,6 +150,20 @@
158150
- name: Configure secure web services (v1)
159151
displayName: ssl, tls
160152
href: how-to-secure-web-service.md
153+
- name: How-to guides (v1)
154+
items:
155+
- name: Install and set up the CLI (v1)
156+
displayName: azurecli, mlops
157+
href: reference-azure-machine-learning-cli.md
158+
- name: Set up software environments CLI (v1)
159+
href: how-to-use-environments.md
160+
- name: Set input & output directories
161+
displayName: large data, write, experiment files, size limit
162+
href: ../how-to-save-write-experiment-files.md
163+
- name: Use private Python packages
164+
displayName: pip, Conda, anaconda
165+
href: how-to-use-private-python-packages.md
166+
161167
- name: Work with data
162168
items:
163169
- name: Access data
@@ -247,15 +253,26 @@
247253
- name: Auto-train a natural language processing model
248254
displayName: nlp, auto ML, automl, SDK
249255
href: how-to-auto-train-nlp-models-v1.md
256+
- name: Auto-train a forecast model
257+
displayName: time series
258+
href: ../how-to-auto-train-forecast.md
250259
- name: Set up AutoML to train computer vision models with Python
251260
displayName: auto ML, automl, SDK
252261
href: how-to-auto-train-image-models-v1.md
253262
- name: Auto-train a small object detection model
254263
displayName: computer vision, image, image model
255264
href: how-to-use-automl-small-object-detect-v1.md
265+
- name: Data splits & cross-validation (Python)
266+
displayName: automl, feature engineering, feature importance
267+
href: ../how-to-configure-cross-validation-data-splits.md
268+
- name: Featurization in automated ML (Python)
269+
displayName: automl, feature engineering, feature importance, BERT
270+
href: ../how-to-configure-auto-features.md
256271
- name: Local inference using ONNX
257272
displayName: SDK, automl
258273
href: how-to-inference-onnx-automl-image-models-v1.md
274+
- name: Troubleshoot automated ML
275+
href: ../how-to-troubleshoot-auto-ml.md
259276
- name: Track experiments with MLflow
260277
displayName: log, monitor, metrics, model registry, register
261278
href: how-to-use-mlflow.md

0 commit comments

Comments
 (0)