|
7 | 7 | - name: Architecture & terms
|
8 | 8 | displayName: architecture, concepts, definitions, glossary
|
9 | 9 | href: concept-azure-machine-learning-architecture.md
|
10 |
| - |
11 | 10 | - name: Upgrade to SDK v2
|
12 | 11 | items:
|
13 | 12 | - name: Upgrade overview
|
|
53 | 52 | - name: "Migrate endpoints"
|
54 | 53 | displayName: migration, v1, v2
|
55 | 54 | href: ../migrate-to-v2-deploy-endpoints.md
|
56 |
| - |
57 |
| -- name: Concepts (v1) |
58 |
| - items: |
59 |
| - - name: Model training |
60 |
| - displayName: run config, machine learning pipeline, ml pipeline, train model |
61 |
| - href: concept-train-machine-learning-model-v1.md |
62 |
| - - name: Work with data |
63 |
| - items: |
64 |
| - - name: Data access |
65 |
| - href: concept-data.md |
66 |
| - - name: Studio network data access |
67 |
| - href: concept-network-data-access.md |
68 |
| - - name: Automated ML overview |
69 |
| - displayName: automl, auto ml |
70 |
| - href: concept-automated-ml-v1.md |
71 |
| - - name: Manage the ML lifecycle (MLOps) |
72 |
| - items: |
73 |
| - - name: MLOps capabilities |
74 |
| - displayName: deploy, deployment, publish, production, operationalize, operationalization |
75 |
| - href: concept-model-management-and-deployment.md |
76 |
| - - name: MLflow |
77 |
| - href: concept-mlflow-v1.md |
78 |
| - - name: Manage resources VS Code |
79 |
| - displayName: vscode,resources |
80 |
| - href: ../how-to-manage-resources-vscode.md |
81 |
| - - name: Git integration |
82 |
| - displayName: github gitlab |
83 |
| - href: ../concept-train-model-git-integration.md |
84 | 55 | - name: Tutorials (v1)
|
85 | 56 | expanded: true
|
86 | 57 | items:
|
87 | 58 | - name: Python get started (Day 1)
|
88 |
| - expanded: true |
89 | 59 | items:
|
90 | 60 | - name: 1. Run a Python script
|
91 | 61 | href: tutorial-1st-experiment-hello-world.md
|
|
112 | 82 | - name: Examples repository
|
113 | 83 | displayName: example, examples, jupyter, python, notebook, github
|
114 | 84 | href: https://github.com/azure/machinelearningnotebooks
|
115 |
| -- name: How-to guides (v1) |
| 85 | +- name: Concepts (v1) |
116 | 86 | items:
|
117 |
| - - name: Install and set up the CLI (v1) |
118 |
| - displayName: azurecli, mlops |
119 |
| - href: reference-azure-machine-learning-cli.md |
120 |
| - - name: Manage workspace using CLI (v1) |
121 |
| - href: how-to-manage-workspace-cli.md |
122 |
| - - name: Set up software environments CLI (v1) |
123 |
| - href: how-to-use-environments.md |
124 |
| - - name: Use private Python packages |
125 |
| - displayName: pip, Conda, anaconda |
126 |
| - href: how-to-use-private-python-packages.md |
| 87 | + - name: Model training |
| 88 | + displayName: run config, machine learning pipeline, ml pipeline, train model |
| 89 | + href: concept-train-machine-learning-model-v1.md |
| 90 | + - name: Work with data |
| 91 | + items: |
| 92 | + - name: Data access |
| 93 | + href: concept-data.md |
| 94 | + - name: Studio network data access |
| 95 | + href: concept-network-data-access.md |
| 96 | + - name: Automated ML overview |
| 97 | + displayName: automl, auto ml |
| 98 | + href: concept-automated-ml-v1.md |
| 99 | + - name: Manage the ML lifecycle (MLOps) |
| 100 | + items: |
| 101 | + - name: MLOps capabilities |
| 102 | + displayName: deploy, deployment, publish, production, operationalize, operationalization |
| 103 | + href: concept-model-management-and-deployment.md |
| 104 | + - name: MLflow |
| 105 | + href: concept-mlflow-v1.md |
| 106 | + - name: Manage resources VS Code |
| 107 | + displayName: vscode,resources |
| 108 | + href: ../how-to-manage-resources-vscode.md |
| 109 | + - name: Git integration |
| 110 | + displayName: github gitlab |
| 111 | + href: ../concept-train-model-git-integration.md |
| 112 | +- name: Infrastructure & security (v1) |
| 113 | + items: |
| 114 | + |
127 | 115 | - name: Create & manage compute resources
|
128 |
| - - name: Workspace Diagnostics |
129 |
| - href: how-to-workspace-diagnostic-api.md |
130 | 116 | items:
|
| 117 | + - name: Manage workspace using CLI (v1) |
| 118 | + href: how-to-manage-workspace-cli.md |
| 119 | + - name: Workspace Diagnostics |
| 120 | + href: how-to-workspace-diagnostic-api.md |
131 | 121 | - name: Compute instance
|
132 | 122 | displayName: compute target
|
133 | 123 | href: how-to-create-manage-compute-instance.md
|
|
137 | 127 | - name: Azure Kubernetes Service
|
138 | 128 | displayName: AKS, inference
|
139 | 129 | href: how-to-create-attach-kubernetes.md
|
| 130 | + - name: Link to Azure Synapse Analytics workspace |
| 131 | + href: ../how-to-link-synapse-ml-workspaces.md |
140 | 132 | - name: Security
|
141 | 133 | items:
|
142 | 134 | - name: Use managed identities for access control
|
|
158 | 150 | - name: Configure secure web services (v1)
|
159 | 151 | displayName: ssl, tls
|
160 | 152 | href: how-to-secure-web-service.md
|
| 153 | +- name: How-to guides (v1) |
| 154 | + items: |
| 155 | + - name: Install and set up the CLI (v1) |
| 156 | + displayName: azurecli, mlops |
| 157 | + href: reference-azure-machine-learning-cli.md |
| 158 | + - name: Set up software environments CLI (v1) |
| 159 | + href: how-to-use-environments.md |
| 160 | + - name: Set input & output directories |
| 161 | + displayName: large data, write, experiment files, size limit |
| 162 | + href: ../how-to-save-write-experiment-files.md |
| 163 | + - name: Use private Python packages |
| 164 | + displayName: pip, Conda, anaconda |
| 165 | + href: how-to-use-private-python-packages.md |
| 166 | + |
161 | 167 | - name: Work with data
|
162 | 168 | items:
|
163 | 169 | - name: Access data
|
|
247 | 253 | - name: Auto-train a natural language processing model
|
248 | 254 | displayName: nlp, auto ML, automl, SDK
|
249 | 255 | href: how-to-auto-train-nlp-models-v1.md
|
| 256 | + - name: Auto-train a forecast model |
| 257 | + displayName: time series |
| 258 | + href: ../how-to-auto-train-forecast.md |
250 | 259 | - name: Set up AutoML to train computer vision models with Python
|
251 | 260 | displayName: auto ML, automl, SDK
|
252 | 261 | href: how-to-auto-train-image-models-v1.md
|
253 | 262 | - name: Auto-train a small object detection model
|
254 | 263 | displayName: computer vision, image, image model
|
255 | 264 | href: how-to-use-automl-small-object-detect-v1.md
|
| 265 | + - name: Data splits & cross-validation (Python) |
| 266 | + displayName: automl, feature engineering, feature importance |
| 267 | + href: ../how-to-configure-cross-validation-data-splits.md |
| 268 | + - name: Featurization in automated ML (Python) |
| 269 | + displayName: automl, feature engineering, feature importance, BERT |
| 270 | + href: ../how-to-configure-auto-features.md |
256 | 271 | - name: Local inference using ONNX
|
257 | 272 | displayName: SDK, automl
|
258 | 273 | href: how-to-inference-onnx-automl-image-models-v1.md
|
| 274 | + - name: Troubleshoot automated ML |
| 275 | + href: ../how-to-troubleshoot-auto-ml.md |
259 | 276 | - name: Track experiments with MLflow
|
260 | 277 | displayName: log, monitor, metrics, model registry, register
|
261 | 278 | href: how-to-use-mlflow.md
|
|
0 commit comments