You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-manage-resources-vscode.md
+11-11Lines changed: 11 additions & 11 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -32,7 +32,7 @@ The quickest way to create resources is using the extension's toolbar.
32
32
1. Select **+** in the activity bar.
33
33
1. Choose your resource from the dropdown list.
34
34
1. Configure the specification file. The information required depends on the type of resource you want to create.
35
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
35
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
36
36
37
37
Alternatively, you can create a resource by using the command palette:
38
38
@@ -50,7 +50,7 @@ To version a resource:
50
50
51
51
1. Use the existing specification file that created the resource or follow the create resources process to create a new specification file.
52
52
1. Increment the version number in the template.
53
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
53
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
54
54
55
55
As long as the name of the updated resource is the same as the previous version, Azure Machine Learning picks up the changes and creates a new version.
56
56
@@ -62,7 +62,7 @@ For more information, see [workspaces](concept-workspace.md).
62
62
63
63
1. In the Azure Machine Learning view, right-click your subscription node and select **Create Workspace**.
64
64
1. A specification file appears. Configure the specification file.
65
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
65
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
66
66
67
67
Alternatively, use the `> Azure ML: Create Workspace` command in the command palette.
68
68
@@ -94,7 +94,7 @@ For more information, see [datastores](concept-data.md#datastores).
94
94
1. Right-click the **Datastores** node and select **Create Datastore**.
95
95
1. Choose the datastore type.
96
96
1. A specification file appears. Configure the specification file.
97
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
97
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
98
98
99
99
Alternatively, use the `> Azure ML: Create Datastore` command in the command palette.
100
100
@@ -124,7 +124,7 @@ For more information, see [datasets](concept-data.md#datasets)
124
124
1. Expand the workspace node you want to create the dataset under.
125
125
1. Right-click the **Datasets** node and select **Create Dataset**.
126
126
1. A specification file appears. Configure the specification file.
127
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
127
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
128
128
129
129
Alternatively, use the `> Azure ML: Create Dataset` command in the command palette.
130
130
@@ -150,7 +150,7 @@ For more information, see [environments](concept-environments.md).
150
150
1. Expand the workspace node you want to create the datastore under.
151
151
1. Right-click the **Environments** node and select **Create Environment**.
152
152
1. A specification file appears. Configure the specification file.
153
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
153
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
154
154
155
155
Alternatively, use the `> Azure ML: Create Environment` command in the command palette.
156
156
@@ -180,7 +180,7 @@ Using the resource nodes in the Azure Machine Learning view:
180
180
1. Right-click the **Experiments** node in your workspace and select **Create Job**.
181
181
1. Choose your job type.
182
182
1. A specification file appears. Configure the specification file.
183
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
183
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
184
184
185
185
Alternatively, use the `> Azure ML: Create Job` command in the command palette.
186
186
@@ -229,7 +229,7 @@ For more information, see [compute instances](concept-compute-instance.md).
229
229
1. Expand the **Compute** node.
230
230
1. Right-click the **Compute instances** node in your workspace and select **Create Compute**.
231
231
1. A specification file appears. Configure the specification file.
232
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
232
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
233
233
234
234
Alternatively, use the `> Azure ML: Create Compute` command in the command palette.
235
235
@@ -275,7 +275,7 @@ For more information, see [training compute targets](concept-compute-target.md#t
275
275
1. Expand the **Compute** node.
276
276
1. Right-click the **Compute clusters** node in your workspace and select **Create Compute**.
277
277
1. A specification file appears. Configure the specification file.
278
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
278
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
279
279
280
280
Alternatively, use the `> Azure ML: Create Compute` command in the command palette.
281
281
@@ -346,7 +346,7 @@ For more information, see [models](concept-azure-machine-learning-architecture.m
346
346
1. Expand your workspace node.
347
347
1. Right-click the **Models** node in your workspace and select **Create Model**.
348
348
1. A specification file appears. Configure the specification file.
349
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
349
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
350
350
351
351
Alternatively, use the `> Azure ML: Create Model` command in the command palette.
352
352
@@ -386,7 +386,7 @@ For more information, see [endpoints](concept-azure-machine-learning-architectur
386
386
1. Right-click the **Models** node in your workspace and select **Create Endpoint**.
387
387
1. Choose your endpoint type.
388
388
1. A specification file appears. Configure the specification file.
389
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
389
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
390
390
391
391
Alternatively, use the `> Azure ML: Create Endpoint` command in the command palette.
Copy file name to clipboardExpand all lines: articles/machine-learning/tutorial-train-deploy-image-classification-model-vscode.md
+3-6Lines changed: 3 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -71,7 +71,7 @@ The first thing you have to do to build an application in Azure Machine Learning
71
71
72
72
The specification file creates a workspace called `TeamWorkspace`in the `WestUS2` region. The rest of the options defined in the specification file provide friendly naming, descriptions, and tags for the workspace.
73
73
74
-
1. Right-click the specification file and select**Azure ML: Create Resource**. Creating a resource uses the configuration options defined in the YAML specification file and submits a job using the CLI (v2). At this point, a request to Azure is made to create a new workspace and dependent resources in your account. After a few minutes, the new workspace appears in your subscription node.
74
+
1. Right-click the specification file and select**Azure ML: Execute YAML**. Creating a resource uses the configuration options defined in the YAML specification file and submits a job using the CLI (v2). At this point, a request to Azure is made to create a new workspace and dependent resources in your account. After a few minutes, the new workspace appears in your subscription node.
75
75
1. Set `TeamWorkspace` as your default workspace. Doing so places resources and jobs you create in the workspace by default. Select the **Set Azure ML Workspace** button on the Visual Studio Code status bar and follow the prompts to set`TeamWorkspace` as your default workspace.
76
76
77
77
For more information on workspaces, see [how to manage resources in VS Code](how-to-manage-resources-vscode.md).
@@ -103,7 +103,7 @@ A compute target is the computing resource or environment where you run training
103
103
104
104
For more information on VM sizes, see [sizes for Linux virtual machines in Azure](../virtual-machines/sizes.md).
105
105
106
-
1. Right-click the specification file and select **Azure ML: Create Resource**.
106
+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
107
107
108
108
After a few minutes, the new compute target appears in the *Compute > Compute clusters* node of your workspace.
109
109
@@ -131,10 +131,7 @@ This specification file submits a training job called `tensorflow-mnist-example`
131
131
To submit the training job:
132
132
133
133
1. Open the *job.yml* file.
134
-
1. Right-click the file in the text editor and select **Azure ML: Create Resource**.
1. Right-click the file in the text editor and select **Azure ML: Execute YAML**.
138
135
139
136
At this point, a request is sent to Azure to run your experiment on the selected compute target in your workspace. This process takes several minutes. The amount of time to run the training job is impacted by several factors like the compute type and training data size. To track the progress of your experiment, right-click the current run node and select **View Run in Azure portal**.
0 commit comments