@@ -1059,78 +1059,6 @@ To stop the container, use the following command from a different shell or comma
1059
1059
docker kill mycontainer
1060
1060
```
1061
1061
1062
- # # (Preview) No-code model deployment
1063
-
1064
- No- code model deployment is currently in preview and supports the following machine learning frameworks:
1065
-
1066
- # ## Tensorflow SavedModel format
1067
-
1068
- ```python
1069
- from azureml.core import Model
1070
-
1071
- model = Model.register(workspace = ws,
1072
- model_name = ' flowers' , # Name of the registered model in your workspace.
1073
- model_path = ' ./flowers_model' , # Local Tensorflow SavedModel folder to upload and register as a model.
1074
- model_framework = Model.Framework.TENSORFLOW , # Framework used to create the model.
1075
- model_framework_version = ' 1.14.0' , # Version of Tensorflow used to create the model.
1076
- description = ' Flowers model' )
1077
-
1078
- service_name = ' tensorflow-flower-service'
1079
- service = Model.deploy(ws, service_name, [model])
1080
- ```
1081
-
1082
- # ## ONNX models
1083
-
1084
- ONNX model registration and deployment is supported for any ONNX inference graph. Preprocess and postprocess steps are not currently supported.
1085
-
1086
- Here is an example of how to register and deploy an MNIST ONNX model:
1087
-
1088
- ```python
1089
- from azureml.core import Model
1090
-
1091
- model = Model.register(workspace = ws,
1092
- model_name = ' mnist-sample' , # Name of the registered model in your workspace.
1093
- model_path = ' mnist-model.onnx' , # Local ONNX model to upload and register as a model.
1094
- model_framework = Model.Framework.ONNX , # Framework used to create the model.
1095
- model_framework_version = ' 1.3' , # Version of ONNX used to create the model.
1096
- description = ' Onnx MNIST model' )
1097
-
1098
- service_name = ' onnx-mnist-service'
1099
- service = Model.deploy(ws, service_name, [model])
1100
- ```
1101
-
1102
- # ## Scikit-learn models
1103
-
1104
- No code model deployment is supported for all built- in scikit- learn model types.
1105
-
1106
- Here is an example of how to register and deploy a sklearn model with no extra code:
1107
-
1108
- ```python
1109
- from azureml.core import Model
1110
- from azureml.core.resource_configuration import ResourceConfiguration
1111
-
1112
- model = Model.register(workspace = ws,
1113
- model_name = ' my-sklearn-model' , # Name of the registered model in your workspace.
1114
- model_path = ' ./sklearn_regression_model.pkl' , # Local file to upload and register as a model.
1115
- model_framework = Model.Framework.SCIKITLEARN , # Framework used to create the model.
1116
- model_framework_version = ' 0.19.1' , # Version of scikit-learn used to create the model.
1117
- resource_configuration = ResourceConfiguration(cpu = 1 , memory_in_gb = 0.5 ),
1118
- description = ' Ridge regression model to predict diabetes progression.' ,
1119
- tags = {' area' : ' diabetes' , ' type' : ' regression' })
1120
-
1121
- service_name = ' my-sklearn-service'
1122
- service = Model.deploy(ws, service_name, [model])
1123
- ```
1124
-
1125
- NOTE : These dependencies are included in the prebuilt sklearn inference container:
1126
-
1127
- ```yaml
1128
- - azureml- defaults
1129
- - inference- schema[numpy- support]
1130
- - scikit- learn
1131
- - numpy
1132
- ```
1133
-
1134
1062
# # Clean up resources
1135
1063
1136
1064
To delete a deployed web service, use `service.delete()` .
0 commit comments