Skip to content

Commit 3ccb27a

Browse files
authored
Merge pull request #42775 from sudivate/patch-2
Removed duplicate content
2 parents 1747e7f + 2915aa8 commit 3ccb27a

File tree

1 file changed

+0
-72
lines changed

1 file changed

+0
-72
lines changed

articles/machine-learning/service/how-to-deploy-and-where.md

Lines changed: 0 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -1059,78 +1059,6 @@ To stop the container, use the following command from a different shell or comma
10591059
docker kill mycontainer
10601060
```
10611061

1062-
## (Preview) No-code model deployment
1063-
1064-
No-code model deployment is currently in preview and supports the following machine learning frameworks:
1065-
1066-
### Tensorflow SavedModel format
1067-
1068-
```python
1069-
from azureml.core import Model
1070-
1071-
model = Model.register(workspace=ws,
1072-
model_name='flowers', # Name of the registered model in your workspace.
1073-
model_path='./flowers_model', # Local Tensorflow SavedModel folder to upload and register as a model.
1074-
model_framework=Model.Framework.TENSORFLOW, # Framework used to create the model.
1075-
model_framework_version='1.14.0', # Version of Tensorflow used to create the model.
1076-
description='Flowers model')
1077-
1078-
service_name = 'tensorflow-flower-service'
1079-
service = Model.deploy(ws, service_name, [model])
1080-
```
1081-
1082-
### ONNX models
1083-
1084-
ONNX model registration and deployment is supported for any ONNX inference graph. Preprocess and postprocess steps are not currently supported.
1085-
1086-
Here is an example of how to register and deploy an MNIST ONNX model:
1087-
1088-
```python
1089-
from azureml.core import Model
1090-
1091-
model = Model.register(workspace=ws,
1092-
model_name='mnist-sample', # Name of the registered model in your workspace.
1093-
model_path='mnist-model.onnx', # Local ONNX model to upload and register as a model.
1094-
model_framework=Model.Framework.ONNX , # Framework used to create the model.
1095-
model_framework_version='1.3', # Version of ONNX used to create the model.
1096-
description='Onnx MNIST model')
1097-
1098-
service_name = 'onnx-mnist-service'
1099-
service = Model.deploy(ws, service_name, [model])
1100-
```
1101-
1102-
### Scikit-learn models
1103-
1104-
No code model deployment is supported for all built-in scikit-learn model types.
1105-
1106-
Here is an example of how to register and deploy a sklearn model with no extra code:
1107-
1108-
```python
1109-
from azureml.core import Model
1110-
from azureml.core.resource_configuration import ResourceConfiguration
1111-
1112-
model = Model.register(workspace=ws,
1113-
model_name='my-sklearn-model', # Name of the registered model in your workspace.
1114-
model_path='./sklearn_regression_model.pkl', # Local file to upload and register as a model.
1115-
model_framework=Model.Framework.SCIKITLEARN, # Framework used to create the model.
1116-
model_framework_version='0.19.1', # Version of scikit-learn used to create the model.
1117-
resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),
1118-
description='Ridge regression model to predict diabetes progression.',
1119-
tags={'area': 'diabetes', 'type': 'regression'})
1120-
1121-
service_name = 'my-sklearn-service'
1122-
service = Model.deploy(ws, service_name, [model])
1123-
```
1124-
1125-
NOTE: These dependencies are included in the prebuilt sklearn inference container:
1126-
1127-
```yaml
1128-
- azureml-defaults
1129-
- inference-schema[numpy-support]
1130-
- scikit-learn
1131-
- numpy
1132-
```
1133-
11341062
## Clean up resources
11351063

11361064
To delete a deployed web service, use `service.delete()`.

0 commit comments

Comments
 (0)