Skip to content

Commit 400c3c8

Browse files
author
Larry Franks
committed
updates per PM feedback
1 parent c565a80 commit 400c3c8

File tree

3 files changed

+11
-6
lines changed

3 files changed

+11
-6
lines changed

articles/machine-learning/concept-endpoints.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -146,7 +146,7 @@ The following table highlights the key differences between managed online endpoi
146146
| **Out-of-box logging** | [Azure Logs and Log Analytics at endpoint level](how-to-deploy-managed-online-endpoints.md#optional-integrate-with-log-analytics) | Unsupported |
147147
| **Application Insights** | Supported | Supported |
148148
| **Managed identity** | [Supported](how-to-access-resources-from-endpoints-managed-identities.md) | Supported |
149-
| **Virtual Network (VNET)** | [Supported](how-to-secure-online-endpoint.md) (preview) | Supported |
149+
| **Virtual Network (VNET)** | [Supported](how-to-secure-online-endpoint.md) | Supported |
150150
| **View costs** | [Endpoint and deployment level](how-to-view-online-endpoints-costs.md) | Cluster level |
151151
| **Mirrored traffic** | [Supported](how-to-safely-rollout-online-endpoints.md#test-the-deployment-with-mirrored-traffic-preview) | Unsupported |
152152
| **No-code deployment** | Supported ([MLflow](how-to-deploy-mlflow-models-online-endpoints.md) and [Triton](how-to-deploy-with-triton.md) models) | Supported ([MLflow](how-to-deploy-mlflow-models-online-endpoints.md) and [Triton](how-to-deploy-with-triton.md) models) |

articles/machine-learning/how-to-prevent-data-loss-exfiltration.md

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -104,9 +104,6 @@ __Allow__ outbound traffic over __TCP port 443__ to the following FQDNs. Replace
104104

105105
* `<region>.batch.azure.com`
106106
* `<region>.service.batch.com`
107-
* `*.blob.core.windows.net` - A Service Endpoint Policy will be applied in a later step to limit outbound traffic.
108-
* `*.queue.core.windows.net` - A Service Endpoint Policy will be applied in a later step to limit outbound traffic.
109-
* `*.table.core.windows.net` - A Service Endpoint Policy will be applied in a later step to limit outbound traffic.
110107

111108
> [!IMPORTANT]
112109
> If you use one firewall for multiple Azure services, having outbound storage rules impacts other services. In this case, limit thee source IP of the outbound storage rule to the address space of the subnet that contains your compute instance and compute cluster resources. This limits the rule to the compute resources in the subnet.

articles/machine-learning/how-to-secure-training-vnet.md

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,11 @@ In the `az ml compute create` command, replace the following values:
147147
* `AmlCompute` or `ComputeInstance`: Specifying `AmlCompute` creates a *compute cluster*. `ComputeInstance` creates a *compute instance*.
148148

149149
```azurecli
150-
az ml compute create --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type AmlCompute or ComputeInstance --enable-node-public-ip false
150+
# create a compute cluster with no public IP
151+
az ml compute create --name cpu-cluster --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type AmlCompute --set enable-node-public-ip=False
152+
153+
# create a compute instance with no public IP
154+
az ml compute create --name myci --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type ComputeInstance --set enable-node-public-ip=False
151155
```
152156

153157
# [Python](#tab/python)
@@ -246,7 +250,11 @@ In the `az ml compute create` command, replace the following values:
246250
* `AmlCompute` or `ComputeInstance`: Specifying `AmlCompute` creates a *compute cluster*. `ComputeInstance` creates a *compute instance*.
247251

248252
```azurecli
249-
az ml compute create --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type AmlCompute or ComputeInstance
253+
# create a compute cluster with a public IP
254+
az ml compute create --name cpu-cluster --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type AmlCompute
255+
256+
# create a compute instance with a public IP
257+
az ml compute create --name myci --resource-group rg --workspace-name ws --vnet-name yourvnet --subnet yoursubnet --type ComputeInstance
250258
```
251259

252260
# [Python](#tab/python)

0 commit comments

Comments
 (0)