Skip to content

Commit 40dcdfb

Browse files
authored
Merge pull request #112617 from likebupt/update-trainer-mode-0424
update trained mode
2 parents 834d5df + a0cff0c commit 40dcdfb

14 files changed

+185
-45
lines changed

articles/machine-learning/algorithm-module-reference/boosted-decision-tree-regression.md

Lines changed: 12 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414

1515
# Boosted Decision Tree Regression module
@@ -74,10 +74,19 @@ The gradient boosting method can also be used for classification problems by red
7474
By default, the random seed is set to 0, which means the initial seed value is obtained from the system clock.
7575

7676

77-
9. Add a training dataset, and one of the training modules:
77+
9. Train the model:
7878

79-
- If you set **Create trainer mode** option to **Single Parameter**, use the [Train Model](train-model.md) module.
79+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
8080

81+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
82+
83+
> [!NOTE]
84+
>
85+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
86+
>
87+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
88+
>
89+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
8190
8291

8392
10. Submit the pipeline.

articles/machine-learning/algorithm-module-reference/decision-forest-regression.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414

1515
# Decision Forest Regression module
@@ -74,9 +74,19 @@ For more information about the theoretical framework for this algorithm and its
7474
By increasing this value, you increase the threshold for creating new rules. For example, with the default value of 1, even a single case can cause a new rule to be created. If you increase the value to 5, the training data would have to contain at least five cases that meet the same conditions.
7575

7676

77-
9. Connect a labeled dataset, select a single label column containing no more than two outcomes, and connect to [Train Model](./train-model.md).
77+
9. Train the model:
7878

79-
- If you set **Create trainer mode** option to **Single Parameter**, train the model by using the [Train Model](./train-model.md) module.
79+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
80+
81+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
82+
83+
> [!NOTE]
84+
>
85+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
86+
>
87+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
88+
>
89+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
8090
8191

8292

articles/machine-learning/algorithm-module-reference/linear-regression.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Linear Regression module
1515
This article describes a module in Azure Machine Learning designer (preview).
@@ -122,9 +122,19 @@ After training is complete:
122122
10. For **Random number seed**, you can optionally type a value to seed the random number generator used by the model. Using a seed value is useful if you want to maintain the same results across different runs of the same pipeline.
123123

124124

125-
12. Add a labeled dataset and one of the training modules.
125+
12. Train the model:
126126

127-
If you are not using a parameter sweep, use the [Train Model](train-model.md) module.
127+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
128+
129+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
130+
131+
> [!NOTE]
132+
>
133+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
134+
>
135+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
136+
>
137+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
128138
129139
13. Submit the pipeline.
130140

articles/machine-learning/algorithm-module-reference/multiclass-boosted-decision-tree.md

Lines changed: 13 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,8 +52,19 @@ You can train this type of model by using the [Train Model](././train-model.md).
5252

5353
The random seed is set by default to 42. Successive runs using different random seeds can have different results.
5454

55-
> [!Note]
56-
> If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](./train-model.md) module.
55+
1. Train the model:
56+
57+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
58+
59+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
60+
61+
> [!NOTE]
62+
>
63+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
64+
>
65+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
66+
>
67+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
5768
5869
## Next steps
5970

articles/machine-learning/algorithm-module-reference/multiclass-decision-forest.md

Lines changed: 14 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Multiclass Decision Forest module
1515

@@ -19,7 +19,7 @@ Use this module to create a machine learning model based on the *decision forest
1919

2020
## More about decision forests
2121

22-
The decision forest algorithm is an ensemble learning method for classification. The algorithm works by building multiple decision trees and then *voting* on the most popular output class. Voting is a form of aggregation, in which each tree in a classification decision forest outputs a non-normalized frequency histogram of labels. The aggregation process sums these histograms and normalizes the result to get the probabilities for each label. The trees that have high prediction confidence have a greater weight in the final decision of the ensemble.
22+
The decision forest algorithm is an ensemble learning method for classification. The algorithm works by building multiple decision trees and then *voting* on the most popular output class. Voting is a form of aggregation, in which each tree in a classification decision forest outputs a non-normalized frequency histogram of labels. The aggregation process sums these histograms and normalizes the result to get the "probabilities" for each label. The trees that have high prediction confidence have a greater weight in the final decision of the ensemble.
2323

2424
Decision trees in general are non-parametric models, meaning they support data with varied distributions. In each tree, a sequence of simple tests is run for each class, increasing the levels of a tree structure until a leaf node (decision) is reached.
2525

@@ -66,9 +66,19 @@ The decision forest classifier in Azure Machine Learning consists of an ensemble
6666

6767

6868

69-
10. Connect a labeled dataset, and one of the training modules:
69+
10. Connect a labeled dataset, and train the model:
7070

71-
+ If you set **Create trainer mode** to **Single Parameter**, use the [Train Model](./train-model.md) module.
71+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
72+
73+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
74+
75+
> [!NOTE]
76+
>
77+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
78+
>
79+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
80+
>
81+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
7282
7383
11. Submit the pipeline.
7484

articles/machine-learning/algorithm-module-reference/multiclass-logistic-regression.md

Lines changed: 14 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Multiclass Logistic Regression module
1515

@@ -49,9 +49,19 @@ In multiclass logistic regression, the classifier can be used to predict multipl
4949

5050
6. **Random number seed**: Type an integer value to use as the seed for the algorithm if you want the results to be repeatable over runs. Otherwise, a system clock value is used as the seed, which can produce slightly different results in runs of the same pipeline.
5151

52-
8. Connect a labeled dataset, and one of the train modules:
53-
54-
+ If you set **Create trainer mode** to **Single Parameter**, use the [Train Model](./train-model.md) module.
52+
8. Connect a labeled dataset, and train the model:
53+
54+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
55+
56+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
57+
58+
> [!NOTE]
59+
>
60+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
61+
>
62+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
63+
>
64+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
5565
5666
9. Submit the pipeline.
5767

articles/machine-learning/algorithm-module-reference/multiclass-neural-network.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Multiclass Neural Network module
1515

@@ -72,9 +72,19 @@ To compute the output of the network for a particular input, a value is calculat
7272

7373
12. **Random number seed**: Type a value to use as the seed, if you want to ensure repeatability across runs of the same pipeline.
7474

75-
14. Connect a training dataset and one of the [training modules](module-reference.md):
75+
14. Train the model:
7676

77-
- If you set **Create trainer mode** to **Single Parameter**, use [Train Model](train-model.md).
77+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
78+
79+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
80+
81+
> [!NOTE]
82+
>
83+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
84+
>
85+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
86+
>
87+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
7888
7989

8090
## Results

articles/machine-learning/algorithm-module-reference/neural-network-regression.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Neural Network Regression module
1515

@@ -76,9 +76,19 @@ Neural networks can be extensively customized. This section describes how to cre
7676

7777
11. For **Random number seed**, you can optionally type a value to use as the seed. Specifying a seed value is useful when you want to ensure repeatability across runs of the same pipeline.
7878

79-
13. Connect a training dataset and one of the [training modules](module-reference.md):
79+
13. Connect a training dataset and train the model:
80+
81+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
82+
83+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
8084

81-
- If you set **Create trainer mode** to **Single Parameter**, use [Train Model](./train-model.md).
85+
> [!NOTE]
86+
>
87+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
88+
>
89+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
90+
>
91+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
8292
8393

8494
14. Submit the pipeline.

articles/machine-learning/algorithm-module-reference/two-class-averaged-perceptron.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Two-Class Averaged Perceptron module
1515

@@ -45,9 +45,19 @@ The simpler perceptron models are suited to learning linearly separable patterns
4545

4646
5. For **Random number seed**, optionally type an integer value to use as the seed. Using a seed is recommended if you want to ensure reproducibility of the pipeline across runs.
4747

48-
1. Connect a training dataset, and one of the training modules:
48+
1. Connect a training dataset, and train the model:
49+
50+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
51+
52+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
4953

50-
- If you set **Create trainer mode** to **Single Parameter**, use the [Train Model](train-model.md) module.
54+
> [!NOTE]
55+
>
56+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
57+
>
58+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
59+
>
60+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
5161
5262

5363

articles/machine-learning/algorithm-module-reference/two-class-boosted-decision-tree.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: reference
99

1010
author: likebupt
1111
ms.author: keli19
12-
ms.date: 02/22/2020
12+
ms.date: 04/22/2020
1313
---
1414
# Two-Class Boosted Decision Tree module
1515

@@ -56,9 +56,19 @@ You can train this type of model using [Train Model](././train-model.md).
5656
The random seed is set by default to 0, which means the initial seed value is obtained from the system clock. Successive runs using a random seed can have different results.
5757

5858

59-
9. Train the model.
59+
9. Train the model:
60+
61+
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](train-model.md) module.
62+
63+
+ If you set **Create trainer mode** to **Parameter Range**, connect a tagged dataset and train the model by using [Tune Model Hyperparameters](tune-model-hyperparameters.md).
6064

61-
+ If you set **Create trainer mode** to **Single Parameter**, connect a tagged dataset and the [Train Model](./train-model.md) module.
65+
> [!NOTE]
66+
>
67+
> If you pass a parameter range to [Train Model](train-model.md), it uses only the default value in the single parameter list.
68+
>
69+
> If you pass a single set of parameter values to the [Tune Model Hyperparameters](tune-model-hyperparameters.md) module, when it expects a range of settings for each parameter, it ignores the values, and uses the default values for the learner.
70+
>
71+
> If you select the **Parameter Range** option and enter a single value for any parameter, that single value you specified is used throughout the sweep, even if other parameters change across a range of values.
6272
6373
## Results
6474

0 commit comments

Comments
 (0)