Skip to content

Commit 4192471

Browse files
authored
Merge pull request #248735 from sdgilley/sdg-update-v1-links
[BULK PR] update links to new branch
2 parents bfe57c0 + 655dbde commit 4192471

26 files changed

+67
-67
lines changed

articles/machine-learning/concept-automated-ml.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -186,7 +186,7 @@ See the [AutoML package](/python/api/azure-ai-ml/azure.ai.ml.automl) for changin
186186

187187
With Azure Machine Learning, you can use automated ML to build a Python model and have it converted to the ONNX format. Once the models are in the ONNX format, they can be run on a variety of platforms and devices. Learn more about [accelerating ML models with ONNX](concept-onnx.md).
188188

189-
See how to convert to ONNX format [in this Jupyter notebook example](https://github.com/Azure/azureml-examples/tree/main/v1/python-sdk/tutorials/automl-with-azureml/classification-bank-marketing-all-features). Learn which [algorithms are supported in ONNX](how-to-configure-auto-train.md#supported-algorithms).
189+
See how to convert to ONNX format [in this Jupyter notebook example](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/classification-bank-marketing-all-features). Learn which [algorithms are supported in ONNX](how-to-configure-auto-train.md#supported-algorithms).
190190

191191
The ONNX runtime also supports C#, so you can use the model built automatically in your C# apps without any need for recoding or any of the network latencies that REST endpoints introduce. Learn more about [using an AutoML ONNX model in a .NET application with ML.NET](./how-to-use-automl-onnx-model-dotnet.md) and [inferencing ONNX models with the ONNX runtime C# API](https://onnxruntime.ai/docs/api/csharp-api.html).
192192

articles/machine-learning/concept-automl-forecasting-methods.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -165,7 +165,7 @@ Each Series in Own Group (1:1) | All Series in Single Group (N:1)
165165
-------------------| -----------------
166166
Naive, Seasonal Naive, Average, Seasonal Average, Exponential Smoothing, ARIMA, ARIMAX, Prophet | Linear SGD, LARS LASSO, Elastic Net, K Nearest Neighbors, Decision Tree, Random Forest, Extremely Randomized Trees, Gradient Boosted Trees, LightGBM, XGBoost, TCNForecaster
167167

168-
More general model groupings are possible via AutoML's Many-Models solution; see our [Many Models- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb) and [Hierarchical time series- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb).
168+
More general model groupings are possible via AutoML's Many-Models solution; see our [Many Models- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb) and [Hierarchical time series- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb).
169169

170170
## Next steps
171171

articles/machine-learning/how-to-auto-train-nlp-models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ You can seamlessly integrate with the [Azure Machine Learning data labeling](how
5858
To install the SDK you can either,
5959
* Create a compute instance, which automatically installs the SDK and is pre-configured for ML workflows. See [Create an Azure Machine Learning compute instance](how-to-create-compute-instance.md) for more information.
6060

61-
* [Install the `automl` package yourself](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/README.md#setup-using-a-local-conda-environment), which includes the [default installation](/python/api/overview/azure/ml/install#default-install) of the SDK.
61+
* [Install the `automl` package yourself](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/README.md#setup-using-a-local-conda-environment), which includes the [default installation](/python/api/overview/azure/ml/install#default-install) of the SDK.
6262

6363
[!INCLUDE [automl-sdk-version](includes/machine-learning-automl-sdk-version.md)]
6464

articles/machine-learning/how-to-automl-forecasting-faq.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,9 +25,9 @@ You can start by reading the [Set up AutoML to train a time-series forecasting m
2525

2626
- [Bike share example](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-task-bike-share/auto-ml-forecasting-bike-share.ipynb)
2727
- [Forecasting using deep learning](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-github-dau/auto-ml-forecasting-github-dau.ipynb)
28-
- [Many Models solution](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb)
29-
- [Forecasting recipes](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-experiment-settings.ipynb)
30-
- [Advanced forecasting scenarios](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
28+
- [Many Models solution](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb)
29+
- [Forecasting recipes](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-experiment-settings.ipynb)
30+
- [Advanced forecasting scenarios](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
3131

3232
## Why is AutoML slow on my data?
3333

@@ -108,8 +108,8 @@ To choose between them, note that NRMSE penalizes outliers in the training data
108108
## How can I improve the accuracy of my model?
109109

110110
- Ensure that you're configuring AutoML the best way for your data. For more information, see the [What modeling configuration should I use?](#what-modeling-configuration-should-i-use) answer.
111-
- Check out the [forecasting recipes notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-experiment-settings.ipynb) for step-by-step guides on how to build and improve forecast models.
112-
- Evaluate the model by using back tests over several forecasting cycles. This procedure gives a more robust estimate of forecasting error and gives you a baseline to measure improvements against. For an example, see the [back-testing notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-backtest-single-model/auto-ml-forecasting-backtest-single-model.ipynb).
111+
- Check out the [forecasting recipes notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-recipes-univariate/auto-ml-forecasting-univariate-recipe-experiment-settings.ipynb) for step-by-step guides on how to build and improve forecast models.
112+
- Evaluate the model by using back tests over several forecasting cycles. This procedure gives a more robust estimate of forecasting error and gives you a baseline to measure improvements against. For an example, see the [back-testing notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-backtest-single-model/auto-ml-forecasting-backtest-single-model.ipynb).
113113
- If the data is noisy, consider aggregating it to a coarser frequency to increase the signal-to-noise ratio. For more information, see [Frequency and target data aggregation](./how-to-auto-train-forecast.md#frequency--target-data-aggregation).
114114
- Add new features that can help predict the target. Subject matter expertise can help greatly when you're selecting training data.
115115
- Compare validation and test metric values, and determine if the selected model is underfitting or overfitting the data. This knowledge can guide you to a better training configuration. For example, you might determine that you need to use more cross-validation folds in response to overfitting.
@@ -140,7 +140,7 @@ AutoML supports the following advanced prediction scenarios:
140140
- Forecasting beyond the forecast horizon
141141
- Forecasting when there's a gap in time between training and forecasting periods
142142

143-
For examples and details, see the [notebook for advanced forecasting scenarios](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
143+
For examples and details, see the [notebook for advanced forecasting scenarios](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
144144

145145
## How do I view metrics from forecasting training jobs?
146146

articles/machine-learning/how-to-prepare-datasets-for-automl-images.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ In this article, you learn how to prepare image data for training computer visio
2525
To generate models for computer vision tasks with automated machine learning, you need to bring labeled image data as input for model training in the form of an `MLTable`.
2626

2727
You can create an `MLTable` from labeled training data in JSONL format.
28-
If your labeled training data is in a different format (like, pascal VOC or COCO), you can use a [conversion script](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection/coco2jsonl.py) to first convert it to JSONL, and then create an `MLTable`. Alternatively, you can use Azure Machine Learning's [data labeling tool](how-to-create-image-labeling-projects.md) to manually label images, and export the labeled data to use for training your AutoML model.
28+
If your labeled training data is in a different format (like, pascal VOC or COCO), you can use a [conversion script](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection/coco2jsonl.py) to first convert it to JSONL, and then create an `MLTable`. Alternatively, you can use Azure Machine Learning's [data labeling tool](how-to-create-image-labeling-projects.md) to manually label images, and export the labeled data to use for training your AutoML model.
2929

3030
## Prerequisites
3131

@@ -150,7 +150,7 @@ my_data = Data(
150150

151151
Next, you will need to get the label annotations in JSONL format. The schema of labeled data depends on the computer vision task at hand. Refer to [schemas for JSONL files for AutoML computer vision experiments](reference-automl-images-schema.md) to learn more about the required JSONL schema for each task type.
152152

153-
If your training data is in a different format (like, pascal VOC or COCO), [helper scripts](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection/coco2jsonl.py) to convert the data to JSONL are available in [notebook examples](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs).
153+
If your training data is in a different format (like, pascal VOC or COCO), [helper scripts](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection/coco2jsonl.py) to convert the data to JSONL are available in [notebook examples](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs).
154154

155155
Once you have created jsonl file following the above steps, you can register it as a data asset using UI. Make sure you select `stream` type in schema section as shown below.
156156

articles/machine-learning/how-to-use-automl-onnx-model-dotnet.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ ONNX is an open-source format for AI models. ONNX supports interoperability betw
2525

2626
- [.NET Core SDK 3.1 or greater](https://dotnet.microsoft.com/download)
2727
- Text Editor or IDE (such as [Visual Studio](https://visualstudio.microsoft.com/vs/) or [Visual Studio Code](https://code.visualstudio.com/Download))
28-
- ONNX model. To learn how to train an AutoML ONNX model, see the following [bank marketing classification notebook (SDK v1)](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb).
28+
- ONNX model. To learn how to train an AutoML ONNX model, see the following [bank marketing classification notebook (SDK v1)](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb).
2929
- [Netron](https://github.com/lutzroeder/netron) (optional)
3030

3131
## Create a C# console application

articles/machine-learning/migrate-to-v2-execution-automl.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
2424

2525
## Submit AutoML run
2626

27-
* SDK v1: Below is a sample AutoML classification task. For the entire code, check out our [examples repo](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb).
27+
* SDK v1: Below is a sample AutoML classification task. For the entire code, check out our [examples repo](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb).
2828

2929
```python
3030
# Imports

articles/machine-learning/migrate-to-v2-execution-pipeline.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -263,6 +263,6 @@ For more information, see the documentation here:
263263

264264
* [steps in SDK v1](/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py&preserve-view=true)
265265
* [Create and run machine learning pipelines using components with the Azure Machine Learning SDK v2](how-to-create-component-pipeline-python.md)
266-
* [Build a simple ML pipeline for image classification (SDK v1)](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/using-pipelines/image-classification.ipynb)
266+
* [Build a simple ML pipeline for image classification (SDK v1)](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/using-pipelines/image-classification.ipynb)
267267
* [OutputDatasetConfig](/python/api/azureml-core/azureml.data.output_dataset_config.outputdatasetconfig?view=azure-ml-py&preserve-view=true)
268268
* [`mldesigner`](https://pypi.org/project/mldesigner/)

articles/machine-learning/reference-automl-images-schema.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -429,7 +429,7 @@ In instance segmentation, output consists of multiple boxes with their scaled to
429429
> These settings are currently in public preview. They are provided without a service-level agreement. Certain features might not be supported or might have constrained capabilities. For more information, see [Supplemental Terms of Use for Microsoft Azure Previews](https://azure.microsoft.com/support/legal/preview-supplemental-terms/).
430430
431431
> [!WARNING]
432-
> **Explainability** is supported only for **multi-class classification** and **multi-label classification**. While generating explanations on online endpoint, if you encounter timeout issues, use [batch scoring notebook (SDK v1)](https://github.com/Azure/azureml-examples/tree/main/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass-batch-scoring) to generate explanations.
432+
> **Explainability** is supported only for **multi-class classification** and **multi-label classification**. While generating explanations on online endpoint, if you encounter timeout issues, use [batch scoring notebook (SDK v1)](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass-batch-scoring) to generate explanations.
433433
434434
In this section, we document the input data format required to make predictions and generate explanations for the predicted class/classes using a deployed model. There's no separate deployment needed for explainability. The same endpoint for online scoring can be utilized to generate explanations. We just need to pass some extra explainability related parameters in input schema and get either visualizations of explanations and/or attribution score matrices (pixel level explanations).
435435

@@ -574,7 +574,7 @@ If `model_explainability`, `visualizations`, `attributions` are set to `True` in
574574

575575

576576
> [!WARNING]
577-
> While generating explanations on online endpoint, make sure to select only few classes based on confidence score in order to avoid timeout issues on the endpoint or use the endpoint with GPU instance type. To generate explanations for large number of classes in multi-label classification, refer to [batch scoring notebook (SDK v1)](https://github.com/Azure/azureml-examples/tree/main/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass-batch-scoring).
577+
> While generating explanations on online endpoint, make sure to select only few classes based on confidence score in order to avoid timeout issues on the endpoint or use the endpoint with GPU instance type. To generate explanations for large number of classes in multi-label classification, refer to [batch scoring notebook (SDK v1)](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass-batch-scoring).
578578
579579
```json
580580
[

articles/machine-learning/tutorial-automated-ml-forecast.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ Also try automated machine learning for these other model types:
3636

3737
* An Azure Machine Learning workspace. See [Create workspace resources](quickstart-create-resources.md).
3838

39-
* Download the [bike-no.csv](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-bike-share/bike-no.csv) data file
39+
* Download the [bike-no.csv](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-bike-share/bike-no.csv) data file
4040

4141
## Sign in to the studio
4242

@@ -66,7 +66,7 @@ Before you configure your experiment, upload your data file to your workspace in
6666

6767
1. Select **Upload files** from the **Upload** drop-down..
6868

69-
1. Choose the **bike-no.csv** file on your local computer. This is the file you downloaded as a [prerequisite](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-bike-share/bike-no.csv).
69+
1. Choose the **bike-no.csv** file on your local computer. This is the file you downloaded as a [prerequisite](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-bike-share/bike-no.csv).
7070

7171
1. Select **Next**
7272

0 commit comments

Comments
 (0)