Skip to content

Commit 424a519

Browse files
Merge pull request #259972 from bhimar/mmd-3x-doc-updates
Mmd 3x doc updates for AutoML Images
2 parents 9cacaaa + 7af6b00 commit 424a519

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

articles/machine-learning/how-to-auto-train-image-models.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -369,20 +369,20 @@ Instance segmentation | **MaskRCNN ResNet FPN**| `maskrcnn_resnet18_fpn` <br> `m
369369

370370
#### Supported model architectures - HuggingFace and MMDetection (preview)
371371

372-
With the new backend that runs on [Azure Machine Learning pipelines](concept-ml-pipelines.md), you can additionally use any image classification model from the [HuggingFace Hub](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers) which is part of the transformers library (such as microsoft/beit-base-patch16-224), as well as any object detection or instance segmentation model from the [MMDetection Version 2.28.2 Model Zoo](https://mmdetection.readthedocs.io/en/v2.28.2/model_zoo.html) (such as atss_r50_fpn_1x_coco).
372+
With the new backend that runs on [Azure Machine Learning pipelines](concept-ml-pipelines.md), you can additionally use any image classification model from the [HuggingFace Hub](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers) which is part of the transformers library (such as microsoft/beit-base-patch16-224), as well as any object detection or instance segmentation model from the [MMDetection Version 3.1.0 Model Zoo](https://mmdetection.readthedocs.io/en/v3.1.0/model_zoo.html) (such as `atss_r50_fpn_1x_coco`).
373373

374-
In addition to supporting any model from HuggingFace Transfomers and MMDetection 2.28.2, we also offer a list of curated models from these libraries in the azureml-staging registry. These curated models have been tested thoroughly and use default hyperparameters selected from extensive benchmarking to ensure effective training. The table below summarizes these curated models.
374+
In addition to supporting any model from HuggingFace Transfomers and MMDetection 3.1.0, we also offer a list of curated models from these libraries in the azureml registry. These curated models have been tested thoroughly and use default hyperparameters selected from extensive benchmarking to ensure effective training. The table below summarizes these curated models.
375375

376376
Task | model architectures | String literal syntax
377377
---|----------|----------
378-
Image classification<br> (multi-class and multi-label)| **BEiT** <br> **ViT** <br> **DeiT** <br> **SwinV2]** | [`microsoft/beit-base-patch16-224-pt22k-ft22k`](https://ml.azure.com/registries/azureml/models/microsoft-beit-base-patch16-224-pt22k-ft22k/version/5)<br> [`google/vit-base-patch16-224`](https://ml.azure.com/registries/azureml/models/google-vit-base-patch16-224/version/5)<br> [`facebook/deit-base-patch16-224`](https://ml.azure.com/registries/azureml/models/facebook-deit-base-patch16-224/version/5)<br> [`microsoft/swinv2-base-patch4-window12-192-22k`](https://ml.azure.com/registries/azureml/models/microsoft-swinv2-base-patch4-window12-192-22k/version/5)
379-
Object Detection | **Sparse R-CNN** <br> **Deformable DETR** <br> **VFNet** <br> **YOLOF** <br> **Swin** | [`sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco`](https://ml.azure.com/registries/azureml/models/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/version/3)<br> [`sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco`](https://ml.azure.com/registries/azureml/models/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/version/3) <br> [`deformable_detr_twostage_refine_r50_16x2_50e_coco`](https://ml.azure.com/registries/azureml/models/deformable_detr_twostage_refine_r50_16x2_50e_coco/version/3) <br> [`vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco`](https://ml.azure.com/registries/azureml/models/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/version/3) <br> [`vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco`](https://ml.azure.com/registries/azureml/models/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/version/3) <br> [`yolof_r50_c5_8x8_1x_coco`](https://ml.azure.com/registries/azureml/models/yolof_r50_c5_8x8_1x_coco/version/3)
380-
Instance Segmentation | **Swin** | [`mask_rcnn_swin-t-p4-w7_fpn_1x_coco`](https://ml.azure.com/registries/azureml/models/mask_rcnn_swin-t-p4-w7_fpn_1x_coco/version/3)
378+
Image classification<br> (multi-class and multi-label)| **BEiT** <br> **ViT** <br> **DeiT** <br> **SwinV2** | [`microsoft/beit-base-patch16-224-pt22k-ft22k`](https://ml.azure.com/registries/azureml/models/microsoft-beit-base-patch16-224-pt22k-ft22k/version/5)<br> [`google/vit-base-patch16-224`](https://ml.azure.com/registries/azureml/models/google-vit-base-patch16-224/version/5)<br> [`facebook/deit-base-patch16-224`](https://ml.azure.com/registries/azureml/models/facebook-deit-base-patch16-224/version/5)<br> [`microsoft/swinv2-base-patch4-window12-192-22k`](https://ml.azure.com/registries/azureml/models/microsoft-swinv2-base-patch4-window12-192-22k/version/5)
379+
Object Detection | **Sparse R-CNN** <br> **Deformable DETR** <br> **VFNet** <br> **YOLOF** <br> **Swin** | [`mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8)<br> [`mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8) <br> [`mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco/version/8) <br> [`mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-yolof_r50_c5_8x8_1x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-yolof_r50_c5_8x8_1x_coco/version/8)
380+
Instance Segmentation | **Swin** | [`mmd-3x-mask-rcnn_swin-t-p4-w7_fpn_1x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-mask-rcnn_swin-t-p4-w7_fpn_1x_coco/version/8)
381381

382382
We constantly update the list of curated models. You can get the most up-to-date list of the curated models for a given task using the Python SDK:
383383
```
384384
credential = DefaultAzureCredential()
385-
ml_client = MLClient(credential, registry_name="azureml-staging")
385+
ml_client = MLClient(credential, registry_name="azureml")
386386

387387
models = ml_client.models.list()
388388
classification_models = []

0 commit comments

Comments
 (0)