Skip to content

Commit 4270332

Browse files
authored
Merge pull request #113051 from nibaccam/patch-6
PipelineData step clarification
2 parents f93a384 + 4ef1349 commit 4270332

File tree

1 file changed

+4
-1
lines changed

1 file changed

+4
-1
lines changed

articles/machine-learning/how-to-create-your-first-pipeline.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -325,7 +325,10 @@ pipeline1 = Pipeline(workspace=ws, steps=steps)
325325

326326
### Use a dataset
327327

328-
Datasets created from Azure Blob storage, Azure Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, and Azure Database for PostgreSQL can be used as input to any pipeline step. With the exception of writing output to a [DataTransferStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py) or [DatabricksStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py), output data ([PipelineData](https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py)) can only be written to Azure Blob and Azure File share datastores.
328+
Datasets created from Azure Blob storage, Azure Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, and Azure Database for PostgreSQL can be used as input to any pipeline step. You can write output to a [DataTransferStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py), [DatabricksStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py), or if you want to write data to a specific datasore use [PipelineData](https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py).
329+
330+
> [!IMPORTANT]
331+
> Writing output data back to a datastore using PipelineData is only supported for Azure Blob and Azure File share datastores. This functionality is not supported for [ADLS Gen 2 datastores](https://docs.microsoft.com/python/api/azureml-core/azureml.data.azure_data_lake_datastore.azuredatalakegen2datastore?view=azure-ml-py) at this time.
329332
330333
```python
331334
dataset_consuming_step = PythonScriptStep(

0 commit comments

Comments
 (0)