Skip to content

Commit 437ab95

Browse files
authored
Update how-to-use-pipelines-prompt-flow.md
update with correct notebook URLs. For issue #112204
1 parent 825af90 commit 437ab95

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

articles/machine-learning/how-to-use-pipelines-prompt-flow.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -37,19 +37,19 @@ Azure Machine Learning offers notebook tutorials for several use cases with prom
3737

3838
**QA Data Generation**
3939

40-
[QA Data Generation](https://github.com/Azure/azureml-insiders/blob/main/previews/retrieval-augmented-generation/examples/notebooks/qa_data_generation.ipynb) can be used to get the best prompt for RAG and to evaluation metrics for RAG. This notebook shows you how to create a QA dataset from your data (Git repo).
40+
[QA Data Generation](https://github.com/Azure/azureml-examples/blob/main/sdk/python/generative-ai/rag/notebooks/qa_data_generation.ipynb) can be used to get the best prompt for RAG and to evaluation metrics for RAG. This notebook shows you how to create a QA dataset from your data (Git repo).
4141

4242

4343
**Test Data Generation and Auto Prompt**
4444

45-
[Use vector indexes to build a retrieval augmented generation model](https://github.com/Azure/azureml-insiders/blob/main/previews/retrieval-augmented-generation/examples/notebooks/mlindex_with_testgen_autoprompt.ipynb) and to evaluate prompt flow on a test dataset.
45+
[Use vector indexes to build a retrieval augmented generation model](https://github.com/Azure/azureml-examples/blob/main/sdk/python/generative-ai/rag/notebooks/mlindex_with_testgen_autoprompt.ipynb) and to evaluate prompt flow on a test dataset.
4646

4747
**Create a FAISS based Vector Index**
4848

49-
[Set up an Azure Machine Learning Pipeline](https://github.com/Azure/azureml-insiders/blob/main/previews/retrieval-augmented-generation/examples/notebooks/faiss/faiss_mlindex_with_langchain.ipynb) to pull a Git Repo, process the data into chunks, embed the chunks and create a langchain compatible FAISS Vector Index.
49+
[Set up an Azure Machine Learning Pipeline](https://github.com/Azure/azureml-examples/blob/main/sdk/python/generative-ai/rag/notebooks/faiss/faiss_mlindex_with_langchain.ipynb) to pull a Git Repo, process the data into chunks, embed the chunks and create a langchain compatible FAISS Vector Index.
5050

5151
## Next steps
5252

5353
[How to create vector index in Azure Machine Learning prompt flow (preview)](how-to-create-vector-index.md)
5454

55-
[Use Vector Stores](concept-vector-stores.md) with Azure Machine Learning (preview)
55+
[Use Vector Stores](concept-vector-stores.md) with Azure Machine Learning (preview)

0 commit comments

Comments
 (0)