Note that multiclass classification metrics are intended for multiclass classification. When applied to a binary dataset, these metrics won't treat any class as the `true` class, as you might expect. Metrics that are clearly meant for multiclass are suffixed with `micro`, `macro`, or `weighted`. Examples include `average_precision_score`, `f1_score`, `precision_score`, `recall_score`, and `AUC`. For example, instead of calculating recall as `tp / (tp + fn)`, the multiclass averaged recall (`micro`, `macro`, or `weighted`) averages over both classes of a binary classification dataset. This is equivalent to calculating the recall for the `true` class and the `false` class separately, and then taking the average of the two.
0 commit comments