Skip to content

Commit 472cd88

Browse files
committed
added changes from @JamesJBarnett
1 parent 2abaa84 commit 472cd88

17 files changed

+19
-19
lines changed

articles/machine-learning/how-to-setup-mlops-github-azureml.md renamed to articles/machine-learning/how-to-setup-mlops-github-azure-ml.md

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -128,28 +128,28 @@ Before you can set up an MLOps project with Machine Learning, you need to set up
128128

129129
1. Fork the [MLOps v2 Demo Template Repo](https://github.com/Azure/mlops-v2-gha-demo) in your GitHub organization
130130

131-
1. Go to https://github.com/Azure/mlops-v2-gha-demo/fork to fork the MLOps v2 demo repo into your Github org. This repo has reusable MLOps code that can be used across multiple projects.
131+
1. Go to https://github.com/Azure/mlops-v2-gha-demo/fork to fork the MLOps v2 demo repo into your GitHub org. This repo has reusable MLOps code that can be used across multiple projects.
132132

133-
![image](./media/how-to-setup-mlops-azureml/gh-fork.png)
133+
![image](./media/how-to-setup-mlops-azureml/github-fork.png)
134134

135135
1. From your GitHub project, select **Settings**:
136136

137-
![GitHub Settings](./media/how-to-setup-mlops-azureml/gh-settings.png)
137+
![GitHub Settings](./media/how-to-setup-mlops-azureml/github-settings.png)
138138

139139
1. Then select **Secrets**, then **Actions**:
140140

141-
![GitHub Secrets](./media/how-to-setup-mlops-azureml/gh-secrets.png)
141+
![GitHub Secrets](./media/how-to-setup-mlops-azureml/github-secrets.png)
142142

143143
1. Select **New repository secret**. Name this secret **AZURE_CREDENTIALS** and paste the service principal output as the content of the secret. Select **Add secret**.
144-
![GitHub Secrets String 1](./media/how-to-setup-mlops-azureml/gh-secrets-string.png)
144+
![GitHub Secrets String 1](./media/how-to-setup-mlops-azureml/github-secrets-string.png)
145145

146146
1. Add each of the following additional GitHub secrets using the corresponding values from the service principal output as the content of the secret:
147147
> **ARM_CLIENT_ID**
148148
> **ARM_CLIENT_SECRET**
149149
> **ARM_SUBSCRIPTION_ID**
150150
> **ARM_TENANT_ID**
151151

152-
![GitHub Secrets String 2](./media/how-to-setup-mlops-azureml/gh-secrets-string2.png)
152+
![GitHub Secrets String 2](./media/how-to-setup-mlops-azureml/github-secrets-string-2.png)
153153

154154
> [!NOTE]
155155
> This finishes the prerequisite section and the deployment of the solution accelerator can happen accordingly.
@@ -184,19 +184,19 @@ This step deploys the training pipeline to the Machine Learning workspace create
184184
185185
1. In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
186186
187-
![GitHub actions](./media/how-to-setup-mlops-azureml/gh-actions.png)
187+
![GitHub actions](./media/how-to-setup-mlops-azureml/github-actions.png)
188188
189189
This displays the pre-defined GitHub workflows associated with your project. For a classical machine learning project, the available workflows look similar to this:
190190
191-
![GitHub workflows](./media/how-to-setup-mlops-azureml/gh-workflows.png)
191+
![GitHub workflows](./media/how-to-setup-mlops-azureml/github-workflows.png)
192192
193193
1. Select would be **tf-gha-deploy-infra.yml**. This would deploy the Azure ML infrastructure using GitHub Actions and Terraform.
194194
195-
![GitHub deploy-infra](./media/how-to-setup-mlops-azureml/gh-deploy-infra.png)
195+
![GitHub deploy-infra](./media/how-to-setup-mlops-azureml/github-deploy-infrastructure.png)
196196
197197
1. On the right side of the page, select **Run workflow** and select the branch to run the workflow on. This may deploy Dev Infrastructure if you've created a dev branch or Prod infrastructure if deploying from main. Monitor the workflow for successful completion.
198198

199-
![GitHub infra pipeline](./media/how-to-setup-mlops-azureml/gh-infra-pipeline.png)
199+
![GitHub infra pipeline](./media/how-to-setup-mlops-azureml/github-infrastructure-pipeline.png)
200200

201201
1. When the pipeline has complete successfully, you can find your Azure ML Workspace and associated resources by logging in to the Azure Portal. Next, a model training and scoring pipelines will be deployed into the new Machine Learning environment.
202202

@@ -234,15 +234,15 @@ Next, you will deploy the model training pipeline to your new Machine Learning w
234234

235235
1. In your GitHub project repository (example: taxi-fare-regression), select **Actions**
236236

237-
![GitHub actions page](./media/how-to-setup-mlops-azureml/gh-actions.png)
237+
![GitHub actions page](./media/how-to-setup-mlops-azureml/github-actions.png)
238238

239239
1. Select the **deploy-model-training-pipeline** from the workflows listed on the left and the click **Run Workflow** to execute the model training workflow. This will take several minutes to run, depending on the compute size.
240240

241-
![Pipeline Run](./media/how-to-setup-mlops-azureml/gh-training-pipeline.png)
241+
![Pipeline Run](./media/how-to-setup-mlops-azureml/github-training-pipeline.png)
242242

243243
1. Once completed, a successful run will register the model in the Machine Learning workspace.
244244

245-
![Training Step](./media/how-to-setup-mlops-azureml/gh-training-step.png)
245+
![Training Step](./media/how-to-setup-mlops-azureml/github-training-step.png)
246246

247247
> [!NOTE]
248248
> If you want to check the output of each individual step, for example to view output of a failed run, click a job output, and then click each step in the job to view any output of that step.
@@ -255,31 +255,31 @@ This scenario includes prebuilt workflows for two approaches to deploying a trai
255255

256256
1. In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
257257

258-
![GitHub actions pages](./media/how-to-setup-mlops-azureml/gh-actions.png)
258+
![GitHub actions pages](./media/how-to-setup-mlops-azureml/github-actions.png)
259259

260260
### Online Endpoint
261261

262262
1. Select the **deploy-online-endpoint-pipeline** from the workflows listed on the left and click **Run workflow** to execute the online endpoint deployment pipeline workflow. The steps in this pipeline will create an online endpoint in your Machine Learning workspace, create a deployment of your model to this endpoint, then allocate traffic to the endpoint.
263263

264-
![GitHub online endpoint](./media/how-to-setup-mlops-azureml/gh-online-endpoint.png)
264+
![GitHub online endpoint](./media/how-to-setup-mlops-azureml/github-online-endpoint.png)
265265

266266
Once completed, you will find the online endpoint deployed in the Azure ML workspace and available for testing.
267267

268-
![Machine Learning taxi online endpoint](./media/how-to-setup-mlops-azureml/aml-taxi-oep.png)
268+
![Machine Learning taxi online endpoint](./media/how-to-setup-mlops-azureml/azure-ml-taxi-online-endpoint.png)
269269

270270
1. To test this deployment, go to the **Endpoints** tab in your Machine Learning workspace, select the endpoint and click the **Test** Tab. You can use the sample input data located in the cloned repo at `/data/taxi-request.json` to test the endpoint.
271271

272-
![AzureML taxi Online endpoint test](./media/how-to-setup-mlops-azureml/azureml-online-endpoint-test.png)
272+
![AzureML taxi Online endpoint test](./media/how-to-setup-mlops-azureml/azure-ml-online-endpoint-test.png)
273273

274274
### Batch Endpoint
275275

276276
1. Select the **deploy-batch-endpoint-pipeline** from the workflows and click **Run workflow** to execute the batch endpoint deployment pipeline workflow. The steps in this pipeline will create a new AmlCompute cluster on which to execute batch scoring, create the batch endpoint in your Machine Learning workspace, then create a deployment of your model to this endpoint.
277277

278-
![GitHub batch endpoint](./media/how-to-setup-mlops-azureml/gh-batch-endpoint.png)
278+
![GitHub batch endpoint](./media/how-to-setup-mlops-azureml/github-batch-endpoint.png)
279279

280280
2. Once completed, you will find the batch endpoint deployed in the Azure ML workspace and available for testing.
281281

282-
![Machine Learning taxi batch endpoint](./media/how-to-setup-mlops-azureml/aml-taxi-bep.png)
282+
![Machine Learning taxi batch endpoint](./media/how-to-setup-mlops-azureml/azure-ml-taxi-batch-endpoint.png)
283283

284284
## Moving to production
285285

0 commit comments

Comments
 (0)