Skip to content

Commit 4824419

Browse files
committed
edits
1 parent 90f0b1a commit 4824419

File tree

1 file changed

+12
-13
lines changed

1 file changed

+12
-13
lines changed

articles/machine-learning/how-to-autoscale-endpoints.md

Lines changed: 12 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,6 @@ author: msakande
99
ms.author: mopeakande
1010
ms.reviewer: sehan
1111
ms.custom: devplatv2, cliv2, update-code
12-
1312
ms.date: 07/29/2024
1413

1514
#customer intent: As a developer, I want to autoscale online endpoints in Azure Machine Learning so I can control resource usage in my deployment based on metrics or schedules.
@@ -21,7 +20,7 @@ ms.date: 07/29/2024
2120

2221
The autoscale process lets you automatically run the right amount of resources to handle the load on your application. [Online endpoints](concept-endpoints.md) in Azure Machine Learning support autoscaling through integration with the Azure Monitor autoscale feature.
2322

24-
Azure Monitor autoscaling provides a rich set of rules. You can configure metrics-based scaling, such as CPU utilization greater than 70%, schedule-based scaling, such as scaling rules for peak business hours, or a combination. For more information, see [Overview of autoscale in Microsoft Azure](../azure-monitor/autoscale/autoscale-overview.md).
23+
Azure Monitor autoscaling provides a rich set of rules. You can configure metrics-based scaling (such as CPU utilization greater than 70%), schedule-based scaling (such as scaling rules for peak business hours), or a combination. For more information, see [Overview of autoscale in Microsoft Azure](../azure-monitor/autoscale/autoscale-overview.md).
2524

2625
:::image type="content" source="media/how-to-autoscale-endpoints/concept-autoscale.png" border="false" alt-text="Diagram that shows how autoscale adds and removes instances as needed.":::
2726

@@ -93,7 +92,7 @@ To enable autoscale for a Machine Learning endpoint, you first define an autosca
9392
mon_client = MonitorManagementClient(
9493
credential, subscription_id
9594
)
96-
```
95+
```
9796

9897
1. Get the endpoint and deployment objects:
9998

@@ -132,19 +131,19 @@ To enable autoscale for a Machine Learning endpoint, you first define an autosca
132131
]
133132
}
134133
)
135-
```
134+
```
136135

137136
# [Studio](#tab/azure-studio)
138137

139138
1. In [Azure Machine Learning studio](https://ml.azure.com), go to your workspace, and select __Endpoints__ from the left menu.
140139

141140
1. In the list of available endpoints, select the endpoint to configure:
142141

143-
:::image type="content" source="media/how-to-autoscale-endpoints/select-endpoint.png" alt-text="Screenshot that shows how to select an endpoint deployment entry for a Machine Learning workspace in the studio.":::
142+
:::image type="content" source="media/how-to-autoscale-endpoints/select-endpoint.png" alt-text="Screenshot that shows how to select an endpoint deployment entry for a Machine Learning workspace in the studio." lightbox="media/how-to-autoscale-endpoints/select-endpoint.png":::
144143

145144
1. On the __Details__ tab for the selected endpoint, select __Configure auto scaling__:
146145

147-
:::image type="content" source="media/how-to-autoscale-endpoints/configure-auto-scaling.png" alt-text="Screenshot that shows how to select the option to configure autoscaling for an endpoint.":::
146+
:::image type="content" source="media/how-to-autoscale-endpoints/configure-auto-scaling.png" alt-text="Screenshot that shows how to select the option to configure autoscaling for an endpoint." lightbox="media/how-to-autoscale-endpoints/configure-auto-scaling.png":::
148147

149148
1. For the __Choose how to scale your resources__ option, select __Custom autoscale__ to begin the configuration.
150149

@@ -155,7 +154,7 @@ To enable autoscale for a Machine Learning endpoint, you first define an autosca
155154
- __Instance limits__ > __Maximum__: Set the value to 5.
156155
- __Instance limits__ > __Default__: Set the value to 2.
157156

158-
:::image type="content" source="media/how-to-autoscale-endpoints/choose-custom-autoscale.png" alt-text="Screenshot that shows how to configure the autoscale settings in the studio.":::
157+
:::image type="content" source="media/how-to-autoscale-endpoints/choose-custom-autoscale.png" alt-text="Screenshot that shows how to configure the autoscale settings in the studio." lightbox="media/how-to-autoscale-endpoints/choose-custom-autoscale.png":::
159158

160159
Leave the configuration pane open. In the next section, you configure the __Rules__ settings.
161160

@@ -203,7 +202,7 @@ The rule is part of the `my-scale-settings` profile, where `autoscale-name` matc
203202
)
204203
```
205204

206-
This rule refers to the last 5-minute average of the `CPUUtilizationpercentage` value from the arguments `metric_name`, `time_window` and `time_aggregation`. When the value of the metric is greater than the `threshold` of 70, two more VM instances are allocated.
205+
This rule refers to the last 5-minute average of the `CPUUtilizationpercentage` value from the arguments `metric_name`, `time_window`, and `time_aggregation`. When the value of the metric is greater than the `threshold` of 70, the deployment allocates two more VM instances.
207206

208207
1. Update the `my-scale-settings` profile to include this rule:
209208

@@ -249,7 +248,7 @@ The following steps continue with the autoscaling configuration.
249248

250249
1. Select __Add__ to create the rule:
251250

252-
:::image type="content" source="media/how-to-autoscale-endpoints/scale-out-rule.png" lightbox="media/how-to-autoscale-endpoints/scale-out-rule.png" alt-text="Screenshot that shows how to configure the scale out rule for greater than 70% CPU for 5 minutes.":::
251+
:::image type="content" source="media/how-to-autoscale-endpoints/scale-out-rule.png" lightbox="media/how-to-autoscale-endpoints/scale-out-rule.png" alt-text="Screenshot that shows how to configure the scale-out rule for greater than 70% CPU for 5 minutes.":::
253252

254253
Leave the configuration pane open. In the next section, you adjust the __Rules__ settings.
255254

@@ -339,9 +338,9 @@ The following steps adjust the __Rules__ configuration to support a scale in rul
339338

340339
:::image type="content" source="media/how-to-autoscale-endpoints/scale-in-rule.png" lightbox="media/how-to-autoscale-endpoints/scale-in-rule.png" alt-text="Screenshot that shows how to configure the scale in rule for less than 30% CPU for 5 minutes.":::
341340

342-
If you configure both scale out and scale in rules, your rules look similar to the following screenshot. The rules specify that if average CPU load exceeds 70% for 5 minutes, two more nodes should be allocated, up to the limit of five. If CPU load is less than 30% for 5 minutes, a single node should be released, down to the minimum of two.
341+
If you configure both scale-out and scale in rules, your rules look similar to the following screenshot. The rules specify that if average CPU load exceeds 70% for 5 minutes, two more nodes should be allocated, up to the limit of five. If CPU load is less than 30% for 5 minutes, a single node should be released, down to the minimum of two.
343342

344-
:::image type="content" source="media/how-to-autoscale-endpoints/autoscale-rules-final.png" lightbox="media/how-to-autoscale-endpoints/autoscale-rules-final.png" alt-text="Screenshot that shows the autoscale settings including the scale in and scale out rules.":::
343+
:::image type="content" source="media/how-to-autoscale-endpoints/autoscale-rules-final.png" lightbox="media/how-to-autoscale-endpoints/autoscale-rules-final.png" alt-text="Screenshot that shows the autoscale settings including the scale in and scale-out rules.":::
345344

346345
Leave the configuration pane open. In the next section, you specify other scale settings.
347346

@@ -581,5 +580,5 @@ Alternatively, you can delete a managed online endpoint directly in the [endpoin
581580
## Related content
582581

583582
- [Understand autoscale settings](../azure-monitor/autoscale/autoscale-understanding-settings.md)
584-
- [Overview of common autoscale patterns](../azure-monitor/autoscale/autoscale-common-scale-patterns.md)
585-
- [Best practices for autoscale](../azure-monitor/autoscale/autoscale-best-practices.md)
583+
- [Review common autoscale patterns](../azure-monitor/autoscale/autoscale-common-scale-patterns.md)
584+
- [Explore best practices for autoscale](../azure-monitor/autoscale/autoscale-best-practices.md)

0 commit comments

Comments
 (0)