Skip to content

Commit 4881e14

Browse files
committed
edits
1 parent de72375 commit 4881e14

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

articles/machine-learning/how-to-use-labeled-dataset.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ In this article, you'll learn how to export the data labels from an Azure Machin
1919

2020
## What are datasets with labels
2121

22-
We refer to Azure Machine Learning datasets with labels as labeled datasets. These specific dataset types of labeled datasets are only created as an output of Azure Machine Learning data labeling projects. Create a data labeling project [for image labeling](how-to-create-image-labeling-projects.md) or [text labeling](how-to-create-text-labeling-projects.md). Machine Learning supports data labeling projects for image classification, either multi-label or multi-class, and object identification together with bounded boxes.
22+
Azure Machine Learning datasets with labels are referred to as labeled datasets. These specific datasets are [TabularDatasets](/python/api/azureml-core/azureml.data.tabular_dataset.tabulardataset) with a dedicated label column and are only created as an output of Azure Machine Learning data labeling projects. Create a data labeling project [for image labeling](how-to-create-image-labeling-projects.md) or [text labeling](how-to-create-text-labeling-projects.md). Machine Learning supports data labeling projects for image classification, either multi-label or multi-class, and object identification together with bounded boxes.
2323

2424
## Prerequisites
2525

@@ -47,21 +47,18 @@ You can access the exported Azure Machine Learning dataset in the **Datasets** s
4747

4848
Once you have exported your labeled data to an Azure Machine Learning dataset, you can use AutoML to build computer vision models trained on your labeled data. Learn more at [Set up AutoML to train computer vision models with Python (preview)](how-to-auto-train-image-models.md)
4949

50-
## Explore labeled datasets
50+
## Explore labeled datasets via pandas dataframe
5151

52-
Load your labeled datasets into a pandas dataframe to leverage popular open-source libraries for data exploration.
52+
Load your labeled datasets into a pandas dataframe to leverage popular open-source libraries for data exploration with the [`to_pandas_dataframe()`](/python/api/azureml-core/azureml.data.tabulardataset#to-pandas-dataframe-on-error--null---out-of-range-datetime--null--) method from the `azureml-dataprep` class.
5353

54-
### Pandas dataframe
55-
56-
You can load labeled datasets into a pandas dataframe with the [`to_pandas_dataframe()`](/python/api/azureml-core/azureml.data.tabulardataset#to-pandas-dataframe-on-error--null---out-of-range-datetime--null--) method from the `azureml-dataprep` class. Install the class with the following shell command:
54+
Install the class with the following shell command:
5755

5856
```shell
5957
pip install azureml-dataprep
6058
```
6159

62-
The exported dataset is a TabularDataset. If you plan to use download() or moint() methods, be sure to set the parameter `stream column ='<image_url>'`
63-
6460
In the following code, the `animal_labels` dataset is the output from a labeling project previously saved to the workspace.
61+
The exported dataset is a [TabularDataset](/python/api/azureml-core/azureml.data.tabular_dataset.tabulardataset). If you plan to use [download()] or [mount()] methods, be sure to set the parameter `stream column ='image_url'`
6562

6663
```Python
6764
import azureml.core
@@ -72,8 +69,8 @@ from azureml.core import Dataset, Workspace
7269
animal_labels = Dataset.get_by_name(workspace, 'animal_labels')
7370
animal_pd = animal_labels.to_pandas_dataframe()
7471

75-
# download the imagess to local
76-
animal_labels.download('<image_url>')
72+
# download the images to local
73+
animal_labels.download(stream_column='image_url')
7774

7875
import matplotlib.pyplot as plt
7976
import matplotlib.image as mpimg
@@ -84,3 +81,6 @@ imgplot = plt.imshow(img)
8481
```
8582

8683
## Next steps
84+
85+
* Learn to [train image classification models in Azure](./tutorial-train-deploy-notebook.md)
86+
* [Set up AutoML to train computer vision models with Python (preview)](how-to-auto-train-image-models.md)

0 commit comments

Comments
 (0)