You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-use-automated-ml-for-ml-models.md
+10-10Lines changed: 10 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -30,7 +30,7 @@ This tutorial provides a high-level overview for working with Automated ML in th
30
30
31
31
- An Azure subscription. You can create a [free or paid account](https://azure.microsoft.com/free/) for Azure Machine Learning.
32
32
33
-
- An Azure Machine Learning workspace or compute instance. To prepare these resources, see [Quickstart: Get started with Azure Machine Learning](./quickstart-create-resources.md).
33
+
- An Azure Machine Learning workspace or compute instance. To prepare these resources, see [Quickstart: Get started with Azure Machine Learning](quickstart-create-resources.md).
34
34
35
35
- The data asset to use for the Automated ML training job. This tutorial describes how to select an existing data asset or create a data asset from a data source, such as a local file, web url, or datastore. For more information, see [Create and manage data assets](how-to-create-data-assets.md).
36
36
@@ -188,7 +188,7 @@ You can select the **View featurization settings** option to see actions to perf
188
188
189
189
The **Featurization** page shows default featurization techniques for your data columns. You can enable/disable automatic featurization and customize the automatic featurization settings for your experiment.
190
190
191
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/view-featurization.png" border="false" alt-text="Screenshot that shows the Select task type dialog box with View featurization settings called out." lightbox="media/how-to-use-automated-ml-for-ml-models/view-featurization.png":::
191
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/view-featurization.png" alt-text="Screenshot that shows the Select task type dialog box with View featurization settings called out." lightbox="media/how-to-use-automated-ml-for-ml-models/view-featurization.png":::
192
192
193
193
1. Select the **Enable featurization** option to allow configuration.
194
194
@@ -202,7 +202,7 @@ The **Featurization** page shows default featurization techniques for your data
202
202
|**Feature type**| Change the value type for the selected column. |
203
203
|**Impute with**| Select what value to impute missing values with in your data. |
204
204
205
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/updated-featurization.png" border="false" alt-text="Screenshot that shows custom featurization in the Azure Machine Learning studio." lightbox="media/how-to-use-automated-ml-for-ml-models/updated-featurization.png":::
205
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/updated-featurization.png" alt-text="Screenshot that shows custom featurization in the Azure Machine Learning studio." lightbox="media/how-to-use-automated-ml-for-ml-models/updated-featurization.png":::
206
206
207
207
The featurization settings don't affect the input data needed for inferencing. If you exclude columns from training, the excluded columns are still required as input for inferencing on the model.
208
208
@@ -246,7 +246,7 @@ The **Validate and test** section provides the following configuration options:
246
246
247
247
-**Forecasting** jobs don't support train/test split.
248
248
249
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/validate-and-test.png" border="false" alt-text="Screenshot that shows how to select validation data and test data in the studio." lightbox="media/how-to-use-automated-ml-for-ml-models/validate-and-test.png":::
249
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/validate-and-test.png" alt-text="Screenshot that shows how to select validation data and test data in the studio.":::
250
250
251
251
### Configure the compute
252
252
@@ -324,7 +324,7 @@ Follow these steps to view the test job metrics of the recommended model:
324
324
325
325
1. Select the job you want, and view the **Metrics** tab:
326
326
327
-
:::image type="content" source="./media/how-to-use-automated-ml-for-ml-models/test-best-model-results.png" border="false" alt-text="Screenshot that shows the test results tab for the automatically tested, recommended model." lightbox="./media/how-to-use-automated-ml-for-ml-models/test-best-model-results.png":::
327
+
:::image type="content" source="./media/how-to-use-automated-ml-for-ml-models/test-best-model-results.png" alt-text="Screenshot that shows the test results tab for the automatically tested, recommended model.":::
328
328
329
329
View the test predictions used to calculate the test metrics by following these steps:
330
330
@@ -365,7 +365,7 @@ If you want to test a different Automated ML generated model, and not the recomm
365
365
366
366
1. To view the results of the test job, open the **Details** page and follow the steps in the [View remote test job results (preview)](#view-remote-test-job-results-preview) section.
367
367
368
-
:::image type="content" source="./media/how-to-use-automated-ml-for-ml-models/test-model-form.png" border="false" alt-text="Screenshot that shows the Test model form." lightbox="./media/how-to-use-automated-ml-for-ml-models/test-model-form.png":::
368
+
:::image type="content" source="./media/how-to-use-automated-ml-for-ml-models/test-model-form.png" alt-text="Screenshot that shows the Test model form.":::
369
369
370
370
## Responsible AI dashboard (preview)
371
371
@@ -377,19 +377,19 @@ Generate a Responsible AI dashboard for a particular model by following these st
377
377
378
378
1. On the **Additional configuration** page, select the **Explain best model** option:
379
379
380
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/best-model-selection-updated.png" border="false" alt-text="Screenshot showing the Automated ML job configuration page with Explain best model selected." lightbox="media/how-to-use-automated-ml-for-ml-models/best-model-selection-updated.png":::
380
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/best-model-selection-updated.png" alt-text="Screenshot showing the Automated ML job configuration page with Explain best model selected.":::
381
381
382
382
1. Switch to the **Compute** tab, and select the **Serverless** option for your compute:
383
383
384
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/compute-serverless.png" border="false" alt-text="Screenshot hat shows the Serverless compute selection." lightbox="media/how-to-use-automated-ml-for-ml-models/compute-serverless.png":::
384
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/compute-serverless.png" alt-text="Screenshot hat shows the Serverless compute selection.":::
385
385
386
386
1. After the operation completes, browse to the **Models** page of your Automated ML job, which contains a list of your trained models. Select the **View Responsible AI dashboard** link:
387
387
388
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/view-responsible-ai.png" border="false" alt-text="Screenshot that shows the View dashboard page within an Automated ML job." lightbox="media/how-to-use-automated-ml-for-ml-models/view-responsible-ai.png":::
388
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/view-responsible-ai.png" alt-text="Screenshot that shows the View dashboard page within an Automated ML job." lightbox="media/how-to-use-automated-ml-for-ml-models/view-responsible-ai.png":::
389
389
390
390
The Responsible AI dashboard appears for the selected model:
391
391
392
-
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/responsible-ai-dashboard.png" border="false" alt-text="Screenshot that shows the Responsible AI dashboard." lightbox="media/how-to-use-automated-ml-for-ml-models/responsible-ai-dashboard.png":::
392
+
:::image type="content" source="media/how-to-use-automated-ml-for-ml-models/responsible-ai-dashboard.png" alt-text="Screenshot that shows the Responsible AI dashboard." lightbox="media/how-to-use-automated-ml-for-ml-models/responsible-ai-dashboard.png":::
393
393
394
394
In the dashboard, you see four components activated for your Automated ML best model:
0 commit comments