Skip to content

Commit 507178a

Browse files
Merge pull request #268124 from sdesai345/main
Note kaito version compatibility and update default model type
2 parents 8927c73 + 15fe33f commit 507178a

File tree

1 file changed

+7
-6
lines changed

1 file changed

+7
-6
lines changed

articles/aks/ai-toolchain-operator.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@ This article shows you how to enable the AI toolchain operator add-on and deploy
1818

1919
* This article assumes a basic understanding of Kubernetes concepts. For more information, see [Kubernetes core concepts for AKS](./concepts-clusters-workloads.md).
2020
* For ***all hosted model inference images*** and recommended infrastructure setup, see the [KAITO GitHub repository](https://github.com/Azure/kaito).
21+
* The AI toolchain operator add-on currently supports KAITO version **v0.1.0**, please make a note of this in considering your choice of model from the KAITO model repository.
2122

2223
## Prerequisites
2324

@@ -189,16 +190,16 @@ The following sections describe how to create an AKS cluster with the AI toolcha
189190
190191
## Deploy a default hosted AI model
191192
192-
1. Deploy the Falcon 7B model YAML file from the GitHub repository using the `kubectl apply` command.
193+
1. Deploy the Falcon 7B-instruct model from the KAITO model repository using the `kubectl apply` command.
193194
194195
```azurecli-interactive
195-
kubectl apply -f https://raw.githubusercontent.com/Azure/kaito/main/examples/kaito_workspace_falcon_7b.yaml
196+
kubectl apply -f https://raw.githubusercontent.com/Azure/kaito/main/examples/kaito_workspace_falcon_7b-instruct.yaml
196197
```
197198
198199
2. Track the live resource changes in your workspace using the `kubectl get` command.
199200
200201
```azurecli-interactive
201-
kubectl get workspace workspace-falcon-7b -w
202+
kubectl get workspace workspace-falcon-7b-instruct -w
202203
```
203204
204205
> [!NOTE]
@@ -207,13 +208,13 @@ The following sections describe how to create an AKS cluster with the AI toolcha
207208
3. Check your service and get the service IP address using the `kubectl get svc` command.
208209
209210
```azurecli-interactive
210-
export SERVICE_IP=$(kubectl get svc workspace-falcon-7b -o jsonpath='{.spec.clusterIP}')
211+
export SERVICE_IP=$(kubectl get svc workspace-falcon-7b-instruct -o jsonpath='{.spec.clusterIP}')
211212
```
212213
213-
4. Run the Falcon 7B model with a sample input of your choice using the following `curl` command:
214+
4. Run the Falcon 7B-instruct model with a sample input of your choice using the following `curl` command:
214215
215216
```azurecli-interactive
216-
kubectl run -it --rm --restart=Never curl --image=curlimages/curl -- curl -X POST http://$CLUSTERIP/chat -H "accept: application/json" -H "Content-Type: application/json" -d "{"prompt":"YOUR QUESTION HERE"}"
217+
kubectl run -it --rm --restart=Never curl --image=curlimages/curl -- curl -X POST http://$SERVICE_IP/chat -H "accept: application/json" -H "Content-Type: application/json" -d "{\"prompt\":\"YOUR QUESTION HERE\"}"
217218
```
218219
219220
## Clean up resources

0 commit comments

Comments
 (0)