Skip to content

Commit 5a857d9

Browse files
authored
Update how-to-use-batch-endpoint.md
1 parent d2f9b9a commit 5a857d9

File tree

1 file changed

+7
-4
lines changed

1 file changed

+7
-4
lines changed

articles/machine-learning/how-to-use-batch-endpoint.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -552,9 +552,10 @@ Once you identified the data store you want to use, configure the output as foll
552552
```python
553553
job = ml_client.batch_endpoints.invoke(
554554
endpoint_name=endpoint_name,
555-
inputs={
556-
"input": Input(path="https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/", type=AssetTypes.URI_FOLDER)
557-
},
555+
input=Input(
556+
path="https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/",
557+
type=AssetTypes.URI_FOLDER
558+
),
558559
params_override=[
559560
{ "output_dataset.datastore_id": f"azureml:{batch_ds.id}" },
560561
{ "output_dataset.path": "/mnist-batch-results" }
@@ -618,7 +619,9 @@ Some settings can be overwritten when invoke to make best use of the compute res
618619
```python
619620
job = ml_client.batch_endpoints.invoke(
620621
endpoint_name=endpoint_name,
621-
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/"),
622+
input=Input(
623+
path="https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/"
624+
),
622625
params_override=[
623626
{ "mini_batch_size": "20" },
624627
{ "compute.instance_count": "5" }

0 commit comments

Comments
 (0)