Skip to content

Commit 5ef6502

Browse files
authored
Update hdinsight-autoscale-clusters.md
Updated alternatives
1 parent e821385 commit 5ef6502

File tree

1 file changed

+6
-1
lines changed

1 file changed

+6
-1
lines changed

articles/hdinsight/hdinsight-autoscale-clusters.md

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ title: Automatically scale Azure HDInsight clusters
33
description: Use the Autoscale feature to automatically scale Azure HDInsight clusters based on a schedule or performance metrics.
44
ms.service: azure-hdinsight
55
ms.topic: how-to
6-
ms.date: 05/22/2024
6+
ms.date: 05/20/2025
77
author: yeturis
88
ms.author: sairamyeturi
99
ms.reviewer: nijelsf
@@ -300,6 +300,11 @@ If autoscale-enabled Interactive Query clusters, an autoscale up/down event also
300300

301301
If the Interactive Query service is manually restarted, you need to manually change the `num_llap_node` configuration (the number of node(s) needed to run the Hive Interactive Query daemon) under *Advanced hive-interactive-env* to match the current active worker node count. Interactive Query Cluster supports only Schedule-Based Autoscale.
302302

303+
### Alternatives
304+
1. Use the schedule-based autoscaling workflow so that the developers will have an opportunity to debug any job failures before the cluster is scaled down.
305+
1. Use the "yarn logs" command in the Azure CLI.
306+
1. Use an open source converter to translate the Tfile formatted logs in the Azure Storage account to plain text.
307+
303308
## Next steps
304309

305310
Read about guidelines for scaling clusters manually in [Scaling guidelines](hdinsight-scaling-best-practices.md).

0 commit comments

Comments
 (0)