1
1
# ## YamlMime:Landing
2
2
3
3
title : Azure Machine Learning documentation
4
- summary : Azure Machine Learning offers web interfaces & SDKs so you can quickly train and deploy your machine learning models and pipelines at scale. Use these capabilities with open-source Python frameworks, such as PyTorch, TensorFlow, and scikit-learn .
4
+ summary : Learn how to use Azure Machine Learning to train, deploy, and manage machine learning models and pipelines at scale. Tutorials, code examples, API references, and more show you how .
5
5
6
6
metadata :
7
7
title : Azure Machine Learning documentation
8
- description : Azure Machine Learning offers you web interfaces & SDKs to quickly train and deploy your machine learning models and pipelines at scale. Use these capabilities with open-source Python frameworks, such as PyTorch, TensorFlow, and scikit-learn .
8
+ description : Learn how to use Azure Machine Learning to train, deploy, and manage machine learning models and pipelines at scale. Tutorials, code examples, API references, and more show you how .
9
9
10
10
services : machine-learning
11
11
ms.service : machine-learning
@@ -14,7 +14,7 @@ metadata:
14
14
ms.collection : collection
15
15
author : j-martens
16
16
ms.author : jmartens
17
- ms.date : 03/05 /2020
17
+ ms.date : 03/18 /2020
18
18
19
19
# linkListType: architecture | concept | deploy | download | get-started | how-to-guide | learn | overview | quickstart | reference | tutorial | video | whats-new
20
20
@@ -23,44 +23,40 @@ landingContent:
23
23
# Start card title with a verb
24
24
25
25
# GET STARTED
26
- - title : Get started with Azure ML
26
+ - title : Get started with machine learning
27
27
linkLists :
28
28
- linkListType : tutorial
29
29
links :
30
- - text : Experiment in Python notebooks
30
+ - text : Python notebooks
31
31
url : tutorial-1st-experiment-sdk-setup.md
32
- - text : Experiment in RStudio
33
- url : tutorial-1st-r-experiment.md
34
- - text : Experiment using drag & drop designer
32
+ - text : The designer (drag & drop)
35
33
url : tutorial-designer-automobile-price-train-score.md
36
- - text : Experiment with automated ML
34
+ - text : RStudio
35
+ url : tutorial-1st-r-experiment.md
36
+ - text : Auto ML
37
37
url : tutorial-first-experiment-automated-ml.md
38
38
- linkListType : overview
39
39
links :
40
- - text : What is Azure ML ?
40
+ - text : What is Azure machine learning ?
41
41
url : overview-what-is-azure-ml.md
42
42
- text : Architecture and concepts
43
43
url : concept-azure-machine-learning-architecture.md
44
- - linkListType : how-to-guide
45
- links :
46
- - text : Set up your environment
47
- url : how-to-configure-environment.md
48
- - text : Set up training compute targets
49
- url : how-to-set-up-training-targets.md
50
44
51
45
# PYTHON
52
- - title : ' Experiment: Python SDK'
46
+ - title : ' Use the Python SDK'
53
47
linkLists :
54
48
- linkListType : tutorial
55
49
links :
56
50
- text : Create your first ML experiment
57
51
url : tutorial-1st-experiment-sdk-setup.md
58
52
- text : Classify images
59
53
url : tutorial-train-models-with-aml.md
60
- - text : Predict taxi fares with automated ML
54
+ - text : Predict taxi fares with Auto ML
61
55
url : tutorial-auto-train-models.md
62
56
- linkListType : how-to-guide
63
57
links :
58
+ - text : Set up your environment
59
+ url : how-to-configure-environment.md
64
60
- text : Train with Scikit-learn
65
61
url : how-to-train-scikit-learn.md
66
62
- text : Train with TensorFlow
@@ -71,28 +67,20 @@ landingContent:
71
67
url : how-to-train-keras.md
72
68
73
69
# Pipelines
74
- - title : ' Use ML Pipelines '
70
+ - title : ' Build ML pipelines '
75
71
linkLists :
76
- - linkListType : overview
77
- links :
78
- - text : What are ML pipelines?
79
- url : concept-ml-pipelines.md
80
- - text : The 'drag-n-drop' designer
81
- url : concept-designer.md
82
72
- linkListType : tutorial
83
73
links :
74
+ - text : Create ML pipelines (Python)
75
+ url : tutorial-pipeline-batch-scoring-classification.md
84
76
- text : Linear regression to predict prices (designer)
85
77
url : tutorial-designer-automobile-price-train-score.md
86
- - text : Create ML pipelines (Python SDK)
87
- url : tutorial-pipeline-batch-scoring-classification.md
88
- - linkListType : how-to-guide
78
+ - linkListType : overview
89
79
links :
90
- - text : Scheduling pipelines (Python SDK)
91
- url : how-to-schedule-pipelines.md
92
- - text : Predict delays (designer)
93
- url : how-to-designer-sample-classification-flight-delay.md
94
- - text : Predict churn (designer)
95
- url : how-to-designer-sample-classification-churn.md
80
+ - text : What are ML pipelines?
81
+ url : concept-ml-pipelines.md
82
+ - text : What is the designer?
83
+ url : concept-designer.md
96
84
97
85
# MLOps
98
86
- title : Deploy & manage models
@@ -103,14 +91,14 @@ landingContent:
103
91
url : concept-model-management-and-deployment.md
104
92
- text : How & where to deploy
105
93
url : how-to-deploy-and-where.md
106
- - text : Authentication
107
- url : how-to-setup-authentication.md
94
+ - text : MLOps examples
95
+ url : https://github.com/microsoft/MLOps
108
96
- text : Realtime prediction
109
97
url : how-to-consume-web-service.md
110
98
- text : Batch prediction
111
99
url : how-to-use-parallel-run-step.md
112
- - text : End-to-end examples (GitHub)
113
- url : https://github.com/microsoft/MLOps
100
+ - text : Authentication
101
+ url : how-to-setup-authentication.md
114
102
115
103
# Reference
116
104
- title : Go to reference docs
@@ -121,11 +109,11 @@ landingContent:
121
109
url : https://docs.microsoft.com/python/api/overview/azure/ml/?view=azure-ml-py
122
110
- text : SDK for R
123
111
url : https://azure.github.io/azureml-sdk-for-r/reference/index.html
112
+ - text : REST API
113
+ url : https://docs.microsoft.com/rest/api/azureml/
124
114
- text : Machine learning CLI
125
115
url : https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml?view=azure-cli-latest
126
116
- text : Designer algorithms & modules
127
117
url : algorithm-module-reference/module-reference.md
128
- - text : REST API
129
- url : https://docs.microsoft.com/rest/api/azureml/
130
118
- text : AI reference architectures (GitHub)
131
119
url : https://github.com/Microsoft/AI
0 commit comments