Skip to content

Commit 60487ff

Browse files
authored
Merge pull request #109293 from likebupt/update-0326
update python, score,error code articles
2 parents 276a9cf + 3836aa4 commit 60487ff

File tree

3 files changed

+115
-38
lines changed

3 files changed

+115
-38
lines changed

articles/machine-learning/algorithm-module-reference/designer-error-codes.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1454,9 +1454,10 @@ This error can also occur when a previous operation changes the dataset such tha
14541454

14551455
Resolution:
14561456

1457-
If you include a label column in the column selection but it isnt recognized, use the [Edit Metadata](edit-metadata.md) module to mark it as a label column.
1457+
If you include a label column in the column selection but it isn't recognized, use the [Edit Metadata](edit-metadata.md) module to mark it as a label column.
14581458

1459-
<!--Use the [Summarize Data](summarize-data.md) module to generate a report that shows how many values are missing in each column. -->Then, you can use the [Clean Missing Data](clean-missing-data.md) module to remove rows with missing values in the label column.
1459+
<!--Use the [Summarize Data](summarize-data.md) module to generate a report that shows how many values are missing in each column. -->
1460+
Then, you can use the [Clean Missing Data](clean-missing-data.md) module to remove rows with missing values in the label column.
14601461

14611462
Check your input datasets to make sure that they contain valid data, and enough rows to satisfy the requirements of the operation. Many algorithms will generate an error message if they require some minimum number rows of data, but the data contains only a few rows, or only a header.
14621463

articles/machine-learning/algorithm-module-reference/execute-python-script.md

Lines changed: 109 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -29,39 +29,115 @@ Azure Machine Learning uses the Anaconda distribution of Python, which includes
2929
- Anaconda 4.5+ distribution for Python 3.6
3030

3131
The pre-installed packages are:
32-
- asn1crypto==0.24.0
33-
- attrs==19.1.0
34-
- azure-common==1.1.18
35-
- azure-storage-blob==1.5.0
36-
- azure-storage-common==1.4.0
37-
- certifi==2019.3.9
38-
- cffi==1.12.2
39-
- chardet==3.0.4
40-
- cryptography==2.6.1
41-
- distro==1.4.0
42-
- idna==2.8
43-
- jsonschema==3.0.1
44-
- lightgbm==2.2.3
45-
- more-itertools==6.0.0
46-
- numpy==1.16.2
47-
- pandas==0.24.2
48-
- Pillow==6.0.0
49-
- pip==19.0.3
50-
- pyarrow==0.12.1
51-
- pycparser==2.19
52-
- pycryptodomex==3.7.3
53-
- pyrsistent==0.14.11
54-
- python-dateutil==2.8.0
55-
- pytz==2018.9
56-
- requests==2.21.0
57-
- scikit-learn==0.20.3
58-
- scipy==1.2.1
59-
- setuptools==40.8.0
60-
- six==1.12.0
61-
- torch==1.0.1.post2
62-
- torchvision==0.2.2.post3
63-
- urllib3==1.24.1
64-
- wheel==0.33.1
32+
- adal==1.2.2
33+
- applicationinsights==0.11.9
34+
- attrs==19.3.0
35+
- azure-common==1.1.25
36+
- azure-core==1.3.0
37+
- azure-graphrbac==0.61.1
38+
- azure-identity==1.3.0
39+
- azure-mgmt-authorization==0.60.0
40+
- azure-mgmt-containerregistry==2.8.0
41+
- azure-mgmt-keyvault==2.2.0
42+
- azure-mgmt-resource==8.0.1
43+
- azure-mgmt-storage==8.0.0
44+
- azure-storage-blob==1.5.0
45+
- azure-storage-common==1.4.2
46+
- azureml-core==1.1.5.5
47+
- azureml-dataprep-native==14.1.0
48+
- azureml-dataprep==1.3.5
49+
- azureml-defaults==1.1.5.1
50+
- azureml-designer-classic-modules==0.0.118
51+
- azureml-designer-core==0.0.31
52+
- azureml-designer-internal==0.0.18
53+
- azureml-model-management-sdk==1.0.1b6.post1
54+
- azureml-pipeline-core==1.1.5
55+
- azureml-telemetry==1.1.5.3
56+
- backports.tempfile==1.0
57+
- backports.weakref==1.0.post1
58+
- boto3==1.12.29
59+
- botocore==1.15.29
60+
- cachetools==4.0.0
61+
- certifi==2019.11.28
62+
- cffi==1.12.3
63+
- chardet==3.0.4
64+
- click==7.1.1
65+
- cloudpickle==1.3.0
66+
- configparser==3.7.4
67+
- contextlib2==0.6.0.post1
68+
- cryptography==2.8
69+
- cycler==0.10.0
70+
- dill==0.3.1.1
71+
- distro==1.4.0
72+
- docker==4.2.0
73+
- docutils==0.15.2
74+
- dotnetcore2==2.1.13
75+
- flask==1.0.3
76+
- fusepy==3.0.1
77+
- gensim==3.8.1
78+
- google-api-core==1.16.0
79+
- google-auth==1.12.0
80+
- google-cloud-core==1.3.0
81+
- google-cloud-storage==1.26.0
82+
- google-resumable-media==0.5.0
83+
- googleapis-common-protos==1.51.0
84+
- gunicorn==19.9.0
85+
- idna==2.9
86+
- imbalanced-learn==0.4.3
87+
- isodate==0.6.0
88+
- itsdangerous==1.1.0
89+
- jeepney==0.4.3
90+
- jinja2==2.11.1
91+
- jmespath==0.9.5
92+
- joblib==0.14.0
93+
- json-logging-py==0.2
94+
- jsonpickle==1.3
95+
- jsonschema==3.0.1
96+
- kiwisolver==1.1.0
97+
- liac-arff==2.4.0
98+
- lightgbm==2.2.3
99+
- markupsafe==1.1.1
100+
- matplotlib==3.1.3
101+
- more-itertools==6.0.0
102+
- msal-extensions==0.1.3
103+
- msal==1.1.0
104+
- msrest==0.6.11
105+
- msrestazure==0.6.3
106+
- ndg-httpsclient==0.5.1
107+
- nimbusml==1.6.1
108+
- numpy==1.18.2
109+
- oauthlib==3.1.0
110+
- pandas==0.25.3
111+
- pathspec==0.7.0
112+
- pip==20.0.2
113+
- portalocker==1.6.0
114+
- protobuf==3.11.3
115+
- pyarrow==0.16.0
116+
- pyasn1-modules==0.2.8
117+
- pyasn1==0.4.8
118+
- pycparser==2.20
119+
- pycryptodomex==3.7.3
120+
- pyjwt==1.7.1
121+
- pyopenssl==19.1.0
122+
- pyparsing==2.4.6
123+
- pyrsistent==0.16.0
124+
- python-dateutil==2.8.1
125+
- pytz==2019.3
126+
- requests-oauthlib==1.3.0
127+
- requests==2.23.0
128+
- rsa==4.0
129+
- ruamel.yaml==0.15.89
130+
- s3transfer==0.3.3
131+
- scikit-learn==0.22.2
132+
- scipy==1.4.1
133+
- secretstorage==3.1.2
134+
- setuptools==46.1.1.post20200323
135+
- six==1.14.0
136+
- smart-open==1.10.0
137+
- urllib3==1.25.8
138+
- websocket-client==0.57.0
139+
- werkzeug==0.16.1
140+
- wheel==0.34.2
65141

66142
To install other packages not in the pre-installed list, for example *scikit-misc*, add the following code to your script:
67143

articles/machine-learning/algorithm-module-reference/score-model.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -31,9 +31,9 @@ Use this module to generate predictions using a trained classification or regres
3131

3232
After you have generated a set of scores using [Score Model](./score-model.md):
3333

34-
+ To generate a set of metrics used for evaluating the models accuracy (performance). you can connect the scored dataset to [Evaluate Model](./evaluate-model.md),
34+
+ To generate a set of metrics used for evaluating the model's accuracy (performance), you can connect the scored dataset to [Evaluate Model](./evaluate-model.md),
3535
+ Right-click the module and select **Visualize** to see a sample of the results.
36-
+ Save the results to a dataset.
36+
<!-- + To Save the results to a dataset. -->
3737

3838
The score, or predicted value, can be in many different formats, depending on the model and your input data:
3939

@@ -43,7 +43,7 @@ The score, or predicted value, can be in many different formats, depending on th
4343

4444
## Publish scores as a web service
4545

46-
A common use of scoring is to return the output as part of a predictive web service. For more information, see this tutorial on how to create a web service based on a pipeline in Azure Machine Learning:
46+
A common use of scoring is to return the output as part of a predictive web service. For more information, see [this tutorial](https://docs.microsoft.com/azure/machine-learning/tutorial-designer-automobile-price-deploy) on how to deploy a real-time endpoint based on a pipeline in Azure Machine Learning designer.
4747

4848
## Next steps
4949

0 commit comments

Comments
 (0)