You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-configure-auto-train.md
+18-18Lines changed: 18 additions & 18 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -144,28 +144,28 @@ Some examples include:
144
144
145
145
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and2 cross-validation folds.
146
146
147
-
```python
147
+
```python
148
148
automl_classifier=AutoMLConfig(
149
-
task='classification',
150
-
primary_metric='AUC_weighted',
151
-
experiment_timeout_minutes=30,
152
-
blacklist_models=['XGBoostClassifier'],
153
-
training_data=train_data,
154
-
label_column_name=label,
155
-
n_cross_validations=2)
156
-
```
149
+
task='classification',
150
+
primary_metric='AUC_weighted',
151
+
experiment_timeout_minutes=30,
152
+
blacklist_models=['XGBoostClassifier'],
153
+
training_data=train_data,
154
+
label_column_name=label,
155
+
n_cross_validations=2)
156
+
```
157
157
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
158
158
159
-
```python
159
+
```python
160
160
automl_regressor= AutoMLConfig(
161
-
task='regression',
162
-
experiment_timeout_minutes=60,
163
-
whitelist_models=['kNN regressor'],
164
-
primary_metric='r2_score',
165
-
training_data=train_data,
166
-
label_column_name=label,
167
-
n_cross_validations=5)
168
-
```
161
+
task='regression',
162
+
experiment_timeout_minutes=60,
163
+
whitelist_models=['kNN regressor'],
164
+
primary_metric='r2_score',
165
+
training_data=train_data,
166
+
label_column_name=label,
167
+
n_cross_validations=5)
168
+
```
169
169
170
170
The three different `task` parameter values (the third task-typeis`forecasting`, and uses a similar algorithm pool as`regression` tasks) determine the list of models to apply. Use the `whitelist`or`blacklist` parameters to further modify iterations with the available models to include or exclude. The list of supported models can be found on [SupportedModels Class](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels) for ([Classification](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.classification), [Forecasting](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting), and [Regression](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.regression)).
0 commit comments