Skip to content

Commit 62b179e

Browse files
authored
Remove indented code block
The indented code block looked strange because the markdown could be seen. By removing the indentation the code block renders normally.
1 parent 3b36f6b commit 62b179e

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

articles/machine-learning/how-to-configure-auto-train.md

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -144,28 +144,28 @@ Some examples include:
144144

145145
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and 2 cross-validation folds.
146146

147-
```python
147+
```python
148148
automl_classifier=AutoMLConfig(
149-
task='classification',
150-
primary_metric='AUC_weighted',
151-
experiment_timeout_minutes=30,
152-
blacklist_models=['XGBoostClassifier'],
153-
training_data=train_data,
154-
label_column_name=label,
155-
n_cross_validations=2)
156-
```
149+
task='classification',
150+
primary_metric='AUC_weighted',
151+
experiment_timeout_minutes=30,
152+
blacklist_models=['XGBoostClassifier'],
153+
training_data=train_data,
154+
label_column_name=label,
155+
n_cross_validations=2)
156+
```
157157
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
158158

159-
```python
159+
```python
160160
automl_regressor = AutoMLConfig(
161-
task='regression',
162-
experiment_timeout_minutes=60,
163-
whitelist_models=['kNN regressor'],
164-
primary_metric='r2_score',
165-
training_data=train_data,
166-
label_column_name=label,
167-
n_cross_validations=5)
168-
```
161+
task='regression',
162+
experiment_timeout_minutes=60,
163+
whitelist_models=['kNN regressor'],
164+
primary_metric='r2_score',
165+
training_data=train_data,
166+
label_column_name=label,
167+
n_cross_validations=5)
168+
```
169169

170170
The three different `task` parameter values (the third task-type is `forecasting`, and uses a similar algorithm pool as `regression` tasks) determine the list of models to apply. Use the `whitelist` or `blacklist` parameters to further modify iterations with the available models to include or exclude. The list of supported models can be found on [SupportedModels Class](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels) for ([Classification](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.classification), [Forecasting](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting), and [Regression](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.regression)).
171171

0 commit comments

Comments
 (0)