@@ -118,7 +118,7 @@ MODEL_NAME='bart-text-summarization'
118
118
az ml model create --name $MODEL_NAME --path "model"
119
119
```
120
120
121
- # [ Python] ( #tab/sdk )
121
+ # [ Python] ( #tab/python )
122
122
123
123
``` python
124
124
model_name = ' bart-text-summarization'
@@ -175,7 +175,7 @@ We are going to create a batch endpoint named `text-summarization-batch` where t
175
175
176
176
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_batch_endpoint" :::
177
177
178
- # [Python](#tab/sdk )
178
+ # [Python](#tab/python )
179
179
180
180
```python
181
181
ml_client.batch_endpoints.begin_create_or_update(endpoint)
@@ -218,7 +218,7 @@ Let's create the deployment that will host the model:
218
218
219
219
:::code language="yaml" source="~ /azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deployment.yml" range="7-10" :::
220
220
221
- # [ Python] ( #tab/sdk )
221
+ # [ Python] ( #tab/python )
222
222
223
223
Let's get a reference to the environment:
224
224
@@ -272,7 +272,7 @@ Let's create the deployment that will host the model:
272
272
273
273
:::code language="azurecli" source="~ /azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_batch_deployment_set_default" :::
274
274
275
- # [ Python] ( #tab/sdk )
275
+ # [ Python] ( #tab/python )
276
276
277
277
To create a new deployment with the indicated environment and scoring script use the following code:
278
278
@@ -317,7 +317,7 @@ Let's create the deployment that will host the model:
317
317
az ml batch-endpoint update --name $ENDPOINT_NAME --set defaults.deployment_name=$DEPLOYMENT_NAME
318
318
```
319
319
320
- # [ Python] ( #tab/sdk )
320
+ # [ Python] ( #tab/python )
321
321
322
322
``` python
323
323
endpoint.defaults.deployment_name = deployment.name
@@ -340,7 +340,7 @@ For testing our endpoint, we are going to use a sample of the dataset [BillSum:
340
340
> [ !NOTE]
341
341
> The utility ` jq ` may not be installed on every installation. You can get instructions in [ this link] ( https://stedolan.github.io/jq/download/ ) .
342
342
343
- # [ Python] ( #tab/sdk )
343
+ # [ Python] ( #tab/python )
344
344
345
345
``` python
346
346
input = Input(type = AssetTypes.URI_FOLDER , path = " data" )
@@ -360,7 +360,7 @@ For testing our endpoint, we are going to use a sample of the dataset [BillSum:
360
360
361
361
:::code language="azurecli" source="~ /azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="show_job_in_studio" :::
362
362
363
- # [ Python] ( #tab/sdk )
363
+ # [ Python] ( #tab/python )
364
364
365
365
``` python
366
366
ml_client.jobs.get(job.name)
@@ -376,7 +376,7 @@ For testing our endpoint, we are going to use a sample of the dataset [BillSum:
376
376
az ml job download --name $JOB_NAME --output-name score --download-path .
377
377
```
378
378
379
- # [ Python] ( #tab/sdk )
379
+ # [ Python] ( #tab/python )
380
380
381
381
``` python
382
382
ml_client.jobs.download(name = job.name, output_name = ' score' , download_path = ' ./' )
0 commit comments