Skip to content

Commit 678e376

Browse files
authored
Merge pull request #100655 from sdgilley/sdg-ci-tools
add install info for compute instance
2 parents b4237b8 + 71cb6c8 commit 678e376

File tree

1 file changed

+17
-2
lines changed

1 file changed

+17
-2
lines changed

articles/machine-learning/concept-compute-instance.md

Lines changed: 17 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ These tools and environments are installed on the compute instance:
5050
|Intel MPI library||
5151
|Azure CLI ||
5252
|Azure Machine Learning samples ||
53-
|Azure Machine Learning EDAT engine ||
53+
|Azure Machine Learning EDAT engine ||
5454
|Docker||
5555
|Nginx||
5656
|NCCL 2.0 ||
@@ -72,11 +72,26 @@ These tools and environments are installed on the compute instance:
7272
|Other PyPI packages|`jupytext`</br>`jupyterlab-git`</br>`tensorboard`</br>`nbconvert`</br>`notebook`</br>`Pillow`|
7373
|Conda packages|`cython`</br>`numpy`</br>`ipykernel`</br>`scikit-learn`</br>`matplotlib`</br>`tqdm`</br>`joblib`</br>`nodejs`</br>`nb_conda_kernels`|
7474
|Deep learning packages|`PyTorch`</br>`TensorFlow`</br>`Keras`</br>`Horovod`</br>`MLFlow`</br>`pandas-ml`</br>`scrapbook`|
75-
|ONNX packages|`keras2onnx`</br>`onnx`</br>`onnxconverter-common`</br>`skl2onnx`</br>`onnxmltools`|
75+
|ONNX packages|`keras2onnx`</br>`onnx`</br>`onnxconverter-common`</br>`skl2onnx`</br>`onnxmltools`|
7676
|Azure Machine Learning Python & R SDK samples||
7777

78+
Python packages are all installed in the **Python 3.6 - AzureML** environment.
79+
7880
Compute instances are typically used as development environments. They can also be used as a compute target for training and inferencing for development and testing. For large tasks, an [Azure Machine Learning compute cluster](how-to-set-up-training-targets.md#amlcompute) with multi-node scaling capabilities is a better compute target choice.
7981

82+
### Installing packages
83+
84+
You can install packages directly in a Jupyter notebook or Rstudio:
85+
86+
* RStudio Use the **Packages** tab on the bottom right, or the **Console** tab on the top left.
87+
* Python: Add install code and execute in a Jupyter notebook cell.
88+
89+
Or you can access a terminal window in any of these ways:
90+
91+
* RStudio: Select the **Terminal** tab on top left.
92+
* Jupyter Lab: Select the **Terminal** tile under the **Other** heading in the Launcher tab.
93+
* Jupyter: Select **New>Terminal** on top right in the Files tab.
94+
* SSH to the machine. Then install Python packages into the **Python 3.6 - AzureML** environment. Install R packages into the **R** environment.
8095

8196
## Accessing files
8297

0 commit comments

Comments
 (0)