Skip to content

Commit 67a6901

Browse files
authored
Merge branch 'MicrosoftDocs:main' into cosmos-quickstarts-refresh
2 parents 0964809 + cb35b3b commit 67a6901

File tree

87 files changed

+2097
-3232
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

87 files changed

+2097
-3232
lines changed

.openpublishing.redirection.azure-monitor.json

Lines changed: 91 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -707,7 +707,7 @@
707707
},
708708
{
709709
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-transition-hybrid.md",
710-
"redirect_url": "/azure/azure-monitor/containers/container-insights-onboard",
710+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
711711
"redirect_document_id": false
712712
},
713713
{
@@ -1702,17 +1702,22 @@
17021702
},
17031703
{
17041704
"source_path_from_root": "/articles/monitoring/monitoring-container-insights-onboard.md",
1705-
"redirect_url": "/azure/azure-monitor/insights/container-insights-onboard",
1705+
"redirect_url": "/azure/azure-monitor/insights/kubernetes-monitoring-enable",
1706+
"redirect_document_id": false
1707+
},
1708+
{
1709+
"source_path_from_root": "/articles/containers/container-insights-enable-provisioned-clusters.md",
1710+
"redirect_url": "/azure/azure-monitor/insights/kubernetes-monitoring-enable",
17061711
"redirect_document_id": false
17071712
},
17081713
{
17091714
"source_path_from_root": "/articles/monitoring/monitoring-container-insights-optout.md",
1710-
"redirect_url": "/azure/azure-monitor/insights/container-insights-optout",
1715+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
17111716
"redirect_document_id": false
17121717
},
17131718
{
17141719
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-optout-openshift.md",
1715-
"redirect_url": "/azure/azure-monitor/insights/container-insights-optout-openshift-v3",
1720+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
17161721
"redirect_document_id": false
17171722
},
17181723
{
@@ -4741,7 +4746,12 @@
47414746
},
47424747
{
47434748
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-agent-config.md",
4744-
"redirect_url": "/azure/azure-monitor/containers/container-insights-agent-config",
4749+
"redirect_url": "/azure/azure-monitor/containers/container-insights-data-collection-configmap",
4750+
"redirect_document_id": false
4751+
},
4752+
{
4753+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-agent-config.md",
4754+
"redirect_url": "/azure/azure-monitor/containers/container-insights-data-collection-configmap",
47454755
"redirect_document_id": false
47464756
},
47474757
{
@@ -4784,6 +4794,16 @@
47844794
"redirect_url": "/azure/azure-monitor/containers/container-insights-enable-new-cluster",
47854795
"redirect_document_id": false
47864796
},
4797+
{
4798+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-enable-aks.md",
4799+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
4800+
"redirect_document_id": false
4801+
},
4802+
{
4803+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-enable-arc-enabled-clusters.md",
4804+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
4805+
"redirect_document_id": false
4806+
},
47874807
{
47884808
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-gpu-monitoring.md",
47894809
"redirect_url": "/azure/azure-monitor/containers/container-insights-gpu-monitoring",
@@ -4836,27 +4856,27 @@
48364856
},
48374857
{
48384858
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-onboard.md",
4839-
"redirect_url": "/azure/azure-monitor/containers/container-insights-onboard",
4859+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
48404860
"redirect_document_id": false
48414861
},
48424862
{
48434863
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-optout.md",
4844-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout",
4864+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
48454865
"redirect_document_id": false
48464866
},
48474867
{
48484868
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-optout-hybrid.md",
4849-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout-hybrid",
4869+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
48504870
"redirect_document_id": false
48514871
},
48524872
{
48534873
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-optout-openshift-v3.md",
4854-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout-openshift-v3",
4874+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
48554875
"redirect_document_id": false
48564876
},
48574877
{
48584878
"source_path_from_root": "/articles/azure-monitor/insights/container-insights-optout-openshift-v4.md",
4859-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout-openshift-v4",
4879+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
48604880
"redirect_document_id": false
48614881
},
48624882
{
@@ -4889,6 +4909,16 @@
48894909
"redirect_url": "/azure/azure-monitor/containers/container-insights-update-metrics",
48904910
"redirect_document_id": false
48914911
},
4912+
{
4913+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-enable-aks-policy.md",
4914+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable&tabs=policy#enable-container-insights",
4915+
"redirect_document_id": false
4916+
},
4917+
{
4918+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-enable-provisioned-clusters.md",
4919+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable.md&tabs=cli#aks-hybrid-cluster",
4920+
"redirect_document_id": false
4921+
},
48924922
{
48934923
"source_path_from_root": "/articles/azure-monitor/log-query/app-expression.md",
48944924
"redirect_url": "/azure/azure-monitor/logs/app-expression",
@@ -5716,7 +5746,7 @@
57165746
},
57175747
{
57185748
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-prometheus-metrics-addon.md",
5719-
"redirect_url": "/azure/azure-monitor/essentials/prometheus-metrics-enable",
5749+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
57205750
"redirect_document_id": false
57215751
},
57225752
{
@@ -6236,17 +6266,17 @@
62366266
},
62376267
{
62386268
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-prometheus.md",
6239-
"redirect_url": "/azure/azure-monitor/containers/prometheus-metrics-enable",
6269+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
62406270
"redirect_document_id": false
62416271
},
62426272
{
62436273
"source_path_from_root": "/articles/azure-monitor/essentials/prometheus-metrics-enable.md",
6244-
"redirect_url": "/azure/azure-monitor/containers/prometheus-metrics-enable",
6274+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable.md#enable-prometheus-and-grafana",
62456275
"redirect_document_id": false
62466276
},
62476277
{
62486278
"source_path_from_root": "/articles/azure-monitor/essentials/prometheus-metrics-disable.md",
6249-
"redirect_url": "/azure/azure-monitor/containers/prometheus-metrics-disable",
6279+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
62506280
"redirect_document_id": false
62516281
},
62526282
{
@@ -6319,6 +6349,21 @@
63196349
"redirect_url": "/azure/azure-monitor/containers/prometheus-authorization-proxy",
63206350
"redirect_document_id": false
63216351
},
6352+
{
6353+
"source_path_from_root": "/articles/azure-monitor/containers/prometheus-metrics-disable.md",
6354+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
6355+
"redirect_document_id": false
6356+
},
6357+
{
6358+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-logging-v2.md",
6359+
"redirect_url": "/azure/azure-monitor/containers/container-insights-logs-schema",
6360+
"redirect_document_id": false
6361+
},
6362+
{
6363+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-onboard.md",
6364+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
6365+
"redirect_document_id": false
6366+
},
63226367
{
63236368
"source_path_from_root": "/articles/azure-monitor/azure-cli-metrics-alert-sample.md",
63246369
"redirect_url": "/azure/azure-monitor/alerts/azure-cli-metrics-alert-sample",
@@ -6349,14 +6394,44 @@
63496394
"redirect_url": "/azure/azure-monitor/agents/solution-agenthealth",
63506395
"redirect_document_id": false
63516396
},
6397+
{
6398+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-optout.md",
6399+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
6400+
"redirect_document_id": false
6401+
},
63526402
{
63536403
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-optout-openshift-v3.md",
6354-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout",
6404+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
63556405
"redirect_document_id": false
63566406
},
63576407
{
63586408
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-optout-openshift-v4.md",
6359-
"redirect_url": "/azure/azure-monitor/containers/container-insights-optout",
6409+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
6410+
"redirect_document_id": false
6411+
},
6412+
{
6413+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-cost-config.md",
6414+
"redirect_url": "/azure/azure-monitor/containers/container-insights-data-collection-dcr",
6415+
"redirect_document_id": false
6416+
},
6417+
{
6418+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-optout-hybrid.md",
6419+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-disable",
6420+
"redirect_document_id": false
6421+
},
6422+
{
6423+
"source_path_from_root": "/articles/azure-monitor/containers/container-insights-v2-migration.md",
6424+
"redirect_url": "/azure/azure-monitor/containers/container-insights-logs-schema",
6425+
"redirect_document_id": false
6426+
},
6427+
{
6428+
"source_path_from_root": "/articles/azure-monitor/containers/prometheus-metrics-enable.md",
6429+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable#enable-prometheus-and-grafana",
6430+
"redirect_document_id": false
6431+
},
6432+
{
6433+
"source_path_from_root": "/articles/azure-monitor/containers/prometheus-metrics-from-arc-enabled-cluster.md",
6434+
"redirect_url": "/azure/azure-monitor/containers/kubernetes-monitoring-enable",
63606435
"redirect_document_id": false
63616436
},
63626437
{

articles/ai-services/document-intelligence/concept-retrieval-augumented-generation.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ monikerRange: '>=doc-intel-3.1.0'
2121

2222
Retrieval-Augmented Generation (RAG) is a design pattern that combines a pretrained Large Language Model (LLM) like ChatGPT with an external data retrieval system to generate an enhanced response incorporating new data outside of the original training data. Adding an information retrieval system to your applications enables you to chat with your documents, generate captivating content, and access the power of Azure OpenAI models for your data. You also have more control over the data used by the LLM as it formulates a response.
2323

24-
The Document Intelligence [Layout model](concept-layout.md) is an advanced machine-learning based document analysis API. The Layout model offers a comprehensive solution for advanced content extraction and document structure analysis capabilities. With the Layout model, you can easily extract text and structural to divide large bodies of text into smaller, meaningful chunks based on semantic content rather than arbitrary splits. The extracted information can be conveniently outputted to Markdown format, enabling you to define your semantic chunking strategy based on the provided building blocks.
24+
The Document Intelligence [Layout model](concept-layout.md) is an advanced machine-learning based document analysis API. The Layout model offers a comprehensive solution for advanced content extraction and document structure analysis capabilities. With the Layout model, you can easily extract text and structural elements to divide large bodies of text into smaller, meaningful chunks based on semantic content rather than arbitrary splits. The extracted information can be conveniently outputted to Markdown format, enabling you to define your semantic chunking strategy based on provided building blocks.
2525

2626
:::image type="content" source="media/rag/azure-rag-processing.png" alt-text="Screenshot depicting semantic chunking with RAG using Azure AI Document Intelligence.":::
2727

@@ -31,9 +31,9 @@ Long sentences are challenging for natural language processing (NLP) application
3131

3232
Text data chunking strategies play a key role in optimizing the RAG response and performance. Fixed-sized and semantic are two distinct chunking methods:
3333

34-
* **Fixed-sized chunking**. Most chunking strategies used in RAG today are based on fix-sized text segments known as chunks. Fixed-sized chunking is quick, easy, and effective with text that doesn't have a strong semantic structure such as logs and data. However it isn't recommended for text that requires semantic understanding and precise context. The fixed-size nature of the window can result in severing words, sentences, or paragraphs impeding comprehension and disrupt the flow of information and understanding.
34+
* **Fixed-sized chunking**. Most chunking strategies used in RAG today are based on fix-sized text segments known as chunks. Fixed-sized chunking is quick, easy, and effective with text that doesn't have a strong semantic structure such as logs and data. However it isn't recommended for text that requires semantic understanding and precise context. The fixed-size nature of the window can result in severing words, sentences, or paragraphs impeding comprehension and disrupting the flow of information and understanding.
3535

36-
* **Semantic chunking**. This method divides the text into chunks based on semantic understanding. Division boundaries are focused on sentence subject and use significant computational algorithmically complex resources. However, it has the distinct advantage of maintaining semantic consistency within each chunk. It's useful for text summarization, sentiment analysis, and document classification tasks.
36+
* **Semantic chunking**. This method divides the text into chunks based on semantic understanding. Division boundaries are focused on sentence subject and use significant computational algorithmically-complex resources. However, it has the distinct advantage of maintaining semantic consistency within each chunk. It's useful for text summarization, sentiment analysis, and document classification tasks.
3737

3838
## Semantic chunking with Document Intelligence Layout model
3939

@@ -43,11 +43,11 @@ Markdown is a structured and formatted markup language and a popular input for e
4343

4444
* **Simplified processing**. You can parse different document types, such as digital and scanned PDFs, images, office files (docx, xlsx, pptx), and HTML, with just a single API call.
4545

46-
* **Scalability and AI quality**. The Layout model is highly scalable in Optical Character Recognition (OCR), table extraction, and [document structure analysis](concept-layout.md#document-layout-analysis). It supports [309 printed and 12 handwritten languages](language-support-ocr.md#model-id-prebuilt-layout) further ensuring high-quality results driven by AI capabilities.
46+
* **Scalability and AI quality**. The Layout model is highly scalable in Optical Character Recognition (OCR), table extraction, and [document structure analysis](concept-layout.md#document-layout-analysis). It supports [309 printed and 12 handwritten languages](language-support-ocr.md#model-id-prebuilt-layout), further ensuring high-quality results driven by AI capabilities.
4747

4848
* **Large learning model (LLM) compatibility**. The Layout model Markdown formatted output is LLM friendly and facilitates seamless integration into your workflows. You can turn any table in a document into Markdown format and avoid extensive effort parsing the documents for greater LLM understanding.
4949

50-
**Text image processed with Document Intelligence Studio and output to markdown using Layout model**
50+
**Text image processed with Document Intelligence Studio and output to MarkDown using Layout model**
5151

5252
:::image type="content" source="media/rag/markdown-text-output.png" alt-text="Screenshot of newspaper article processed by Layout model and outputted to Markdown.":::
5353

@@ -109,7 +109,7 @@ You can follow the [Document Intelligence Studio quickstart](quickstarts/try-doc
109109

110110
* [Azure OpenAI on your data](../openai/concepts/use-your-data.md) enables you to run supported chat on your documents. Azure OpenAI on your data applies the Document Intelligence Layout model to extract and parse document data by chunking long text based on tables and paragraphs. You can also customize your chunking strategy using [Azure OpenAI sample scripts](https://github.com/microsoft/sample-app-aoai-chatGPT/tree/main/scripts) located in our GitHub repo.
111111

112-
* Azure AI Document Intelligence is now integrated with [LangChain](https://python.langchain.com/docs/integrations/document_loaders/azure_document_intelligence) as one of its document loaders. You can use it to easily load the data and output to Markdown format. This [notebook](https://github.com/microsoft/Form-Recognizer-Toolkit/blob/main/SampleCode/Python/sample_rag_langchain.ipynb) shows a simple demo for RAG pattern with Azure AI Document Intelligence as document loader and Azure Search as retriever in LangChain.
112+
* Azure AI Document Intelligence is now integrated with [LangChain](https://python.langchain.com/docs/integrations/document_loaders/azure_document_intelligence) as one of its document loaders. You can use it to easily load the data and output to Markdown format. For more information, see our [sample code ](https://github.com/microsoft/Form-Recognizer-Toolkit/blob/main/SampleCode/Python/sample_rag_langchain.ipynb) that shows a simple demo for RAG pattern with Azure AI Document Intelligence as document loader and Azure Search as retriever in LangChain.
113113

114114
* The chat with your data solution accelerator [code sample](https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator) demonstrates an end-to-end baseline RAG pattern sample. It uses Azure AI Search as a retriever and Azure AI Document Intelligence for document loading and semantic chunking.
115115

0 commit comments

Comments
 (0)