You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/cognitive-services/Anomaly-Detector/How-to/train-model.md
+5-5Lines changed: 5 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,7 +14,7 @@ ms.author: mbullwin
14
14
15
15
# Train a Multivariate Anomaly Detection model
16
16
17
-
To test out Multivariate Anomaly Detection quickly, try the [Code Sample](https://github.com/Azure-Samples/AnomalyDetector)! For more instructions on how to run a jupyter notebook, please refer to [Install and Run a Jupyter Notebook](https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/install.html#).
17
+
To test out Multivariate Anomaly Detection quickly, try the [Code Sample](https://github.com/Azure-Samples/AnomalyDetector)! For more instructions on how to run a Jupyter notebook, please refer to [Install and Run a Jupyter Notebook](https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/install.html#).
18
18
19
19
## API Overview
20
20
@@ -31,9 +31,9 @@ There are 7 APIs provided in Multivariate Anomaly Detection:
31
31
| ------ | ---- | ----------- | ------ |
32
32
|**Train Model**| POST |`{endpoint}`/anomalydetector/v1.1/multivariate/models | Create and train a model |
33
33
|**Get Model Status**| GET |`{endpoint}`anomalydetector/v1.1/multivariate/models/`{modelId}`| Get model status and model metadata with `modelId`|
34
-
|**Batch Inference**| POST |`{endpoint}`/anomalydetector/v1.1/multivariate/models/`{modelId}`: detect-batch | Trigger an asynchronous inference with `modelId` which works in a batch scenario |
34
+
|**Batch Inference**| POST |`{endpoint}`/anomalydetector/v1.1/multivariate/models/`{modelId}`: detect-batch | Trigger an asynchronous inference with `modelId`, which works in a batch scenario |
35
35
|**Get Batch Inference Results**| GET |`{endpoint}`/anomalydetector/v1.1/multivariate/detect-batch/`{resultId}`| Get batch inference results with `resultId`|
36
-
|**Streaming Inference**| POST |`{endpoint}`/anomalydetector/v1.1/multivariate/models/`{modelId}`: detect-last | Trigger a synchronous inference with `modelId` which works in a streaming scenario |
36
+
|**Streaming Inference**| POST |`{endpoint}`/anomalydetector/v1.1/multivariate/models/`{modelId}`: detect-last | Trigger a synchronous inference with `modelId`, which works in a streaming scenario |
37
37
|**List Model**| GET |`{endpoint}`/anomalydetector/v1.1/multivariate/models | List all models |
38
38
|**Delete Model**| DELET |`{endpoint}`/anomalydetector/v1.1/multivariate/models/`{modelId}`| Delete model with `modelId`|
39
39
@@ -141,7 +141,7 @@ Other parameters for training API are optional:
141
141
|`Zero`| Fill `nan` values with 0. |
142
142
|`Fixed`| Fill `nan` values with a specified valid value that should be provided in `paddingValue`. |
143
143
144
-
***paddingValue**: Padding value is used to fill `nan` when `fillNAMethod` is `Fixed` and must be provided in that case. In other cases it's optional.
144
+
***paddingValue**: Padding value is used to fill `nan` when `fillNAMethod` is `Fixed` and must be provided in that case. In other cases, it's optional.
145
145
146
146
***displayName**: This is an optional parameter, which is used to identify models. For example, you can use it to mark parameters, data sources, and any other metadata about the model and its input data. The default value is an empty string.
147
147
@@ -450,4 +450,4 @@ The response contains four fields, `models`, `currentCount`, `maxCount`, and `ne
450
450
451
451
## Next steps
452
452
453
-
*[Best practices of multivariate anomaly detection](../concepts/best-practices-multivariate.md)
453
+
*[Best practices of multivariate anomaly detection](../concepts/best-practices-multivariate.md)
0 commit comments