Skip to content

Commit 6e5aa29

Browse files
author
Jill Grant
authored
Merge pull request #278238 from SturgeonMi/patch-34
Update how-to-datastore.md
2 parents 044a33d + 903c4ab commit 6e5aa29

File tree

3 files changed

+20
-26
lines changed

3 files changed

+20
-26
lines changed

articles/machine-learning/how-to-datastore.md

Lines changed: 20 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -420,30 +420,24 @@ az ml datastore create --file my_adls_datastore.yml
420420

421421
## Create a OneLake (Microsoft Fabric) datastore (preview)
422422

423-
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Machine Learning supports connection to Microsoft Fabric lakehouse artifacts that include folders or files and Amazon S3 shortcuts. For more information about lakehouses, see [What is a lakehouse in Microsoft Fabric?](/fabric/data-engineering/lakehouse-overview).
423+
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Machine Learning supports connection to Microsoft Fabric lakehouse artifacts in "Files" folder that include folders or files and Amazon S3 shortcuts. For more information about lakehouses, see [What is a lakehouse in Microsoft Fabric?](/fabric/data-engineering/lakehouse-overview).
424424

425425
OneLake datastore creation requires the following information from your Microsoft Fabric instance:
426426

427427
- Endpoint
428-
- Fabric workspace name or GUID
429-
- Artifact name or GUID
428+
- Workspace GUID
429+
- Artifact GUID
430430

431-
The following three screenshots describe the retrieval of these required information resources from your Microsoft Fabric instance.
431+
The following screenshots describe the retrieval of these required information resources from your Microsoft Fabric instance.
432432

433-
### OneLake workspace name
434-
In your Microsoft Fabric instance, you can find the workspace information, as shown in this screenshot. You can use either a GUID value or a "friendly name" to create a Machine Learning OneLake datastore.
433+
:::image type="content" source="media/how-to-datastore/onelake-properties.png" alt-text="Screenshot that shows how to click into artifact properties of Microsoft Fabric workspace artifact in Microsoft Fabric UI." lightbox="./media/how-to-datastore/onelake-properties.png":::
435434

436-
:::image type="content" source="media/how-to-datastore/fabric-workspace.png" alt-text="Screenshot that shows Microsoft Fabric workspace details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-workspace.png":::
435+
You will then find "Endpoint", "Workspace GUID" and "Artifact GUID" in "URL" and "ABFS path" from the "Properties" page:
437436

438-
### OneLake endpoint
439-
This screenshot shows how you can find endpoint information in your Microsoft Fabric instance.
437+
- URL format: https://{your_one_lake_endpoint}/{your_one_lake_workspace_guid}/{your_one_lake_artifact_guid}/Files
438+
- ABFS path format: abfss://{your_one_lake_workspace_guid}@{your_one_lake_endpoint}/{your_one_lake_artifact_guid}/Files
440439

441-
:::image type="content" source="media/how-to-datastore/fabric-endpoint.png" alt-text="Screenshot that shows Microsoft Fabric endpoint details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-endpoint.png":::
442-
443-
### OneLake artifact name
444-
This screenshot shows how you can find the artifact information in your Microsoft Fabric instance. The screenshot also shows how you can use either a GUID value or a friendly name to create a Machine Learning OneLake datastore.
445-
446-
:::image type="content" source="media/how-to-datastore/fabric-lakehouse.png" alt-text="Screenshot that shows how to get Microsoft Fabric lakehouse artifact details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-lakehouse.png":::
440+
:::image type="content" source="media/how-to-datastore/onelake-url-abfs-path.png" alt-text="Screenshot that shows URL and ABFS path of a OneLake artifact in Microsoft Fabric UI." lightbox="./media/how-to-datastore/onelake-url-abfs-path.png":::
447441

448442
## Create a OneLake datastore
449443

@@ -458,10 +452,10 @@ ml_client = MLClient.from_config()
458452
store = OneLakeDatastore(
459453
name="onelake_example_id",
460454
description="Datastore pointing to an Microsoft fabric artifact.",
461-
one_lake_workspace_name="AzureML_Sample_OneLakeWS",
462-
endpoint="msit-onelake.dfs.fabric.microsoft.com"
455+
one_lake_workspace_name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", #{your_one_lake_workspace_guid}
456+
endpoint="msit-onelake.dfs.fabric.microsoft.com" #{your_one_lake_endpoint}
463457
artifact = OneLakeArtifact(
464-
name="AzML_Sample_LH",
458+
name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files","{your_one_lake_artifact_guid}/Files
465459
type="lake_house"
466460
)
467461
)
@@ -486,10 +480,10 @@ ml_client = MLClient.from_config()
486480
store = OneLakeDatastore(
487481
name="onelake_example_sp",
488482
description="Datastore pointing to an Microsoft fabric artifact.",
489-
one_lake_workspace_name="AzureML_Sample_OneLakeWS",
490-
endpoint="msit-onelake.dfs.fabric.microsoft.com"
483+
one_lake_workspace_name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", #{your_one_lake_workspace_guid}
484+
endpoint="msit-onelake.dfs.fabric.microsoft.com" #{your_one_lake_endpoint}
491485
artifact = OneLakeArtifact(
492-
name="AzML_Sample_LH",
486+
name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files","{your_one_lake_artifact_guid}/Files
493487
type="lake_house"
494488
)
495489
credentials=ServicePrincipalCredentials(
@@ -511,11 +505,11 @@ $schema: http://azureml/sdk-2-0/OneLakeDatastore.json
511505
name: onelake_example_id
512506
type: one_lake
513507
description: Credential-less datastore pointing to a OneLake lakehouse.
514-
one_lake_workspace_name: "AzureML_Sample_OneLakeWS"
508+
one_lake_workspace_name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
515509
endpoint: "msit-onelake.dfs.fabric.microsoft.com"
516510
artifact:
517511
type: lake_house
518-
name: "AzML_Sample_LH"
512+
name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files"
519513
```
520514
521515
Create the Machine Learning datastore in the CLI:
@@ -533,11 +527,11 @@ $schema: http://azureml/sdk-2-0/OneLakeDatastore.json
533527
name: onelake_example_id
534528
type: one_lake
535529
description: Credential-less datastore pointing to a OneLake lakehouse.
536-
one_lake_workspace_name: "AzureML_Sample_OneLakeWS"
530+
one_lake_workspace_name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
537531
endpoint: "msit-onelake.dfs.fabric.microsoft.com"
538532
artifact:
539533
type: lake_house
540-
name: "AzML_Sample_LH"
534+
name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files"
541535
credentials:
542536
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
543537
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
@@ -556,4 +550,4 @@ az ml datastore create --file my_onelakesp_datastore.yml
556550
- [Access data in a job](how-to-read-write-data-v2.md#access-data-in-a-job)
557551
- [Create and manage data assets](how-to-create-data-assets.md#create-and-manage-data-assets)
558552
- [Import data assets (preview)](how-to-import-data-assets.md#import-data-assets-preview)
559-
- [Data administration](how-to-administrate-data-authentication.md#data-administration)
553+
- [Data administration](how-to-administrate-data-authentication.md#data-administration)
57.6 KB
Loading
38.9 KB
Loading

0 commit comments

Comments
 (0)