Skip to content

Commit 7096e64

Browse files
author
Larry Franks
committed
fixing links
1 parent 13553e6 commit 7096e64

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

articles/machine-learning/v1/how-to-create-register-datasets.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ Create a TabularDataset with [the Python SDK](#create-a-tabulardataset) or [Azur
9595
9696
## Access datasets in a virtual network
9797

98-
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
98+
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](how-to-secure-workspace-vnet.md#datastores-and-datasets).
9999

100100

101101
## Create datasets from datastores
@@ -119,7 +119,7 @@ To create datasets from a datastore with the Python SDK:
119119

120120
Use the [`from_files()`](/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset.
121121

122-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
122+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
123123

124124
```Python
125125
from azureml.core import Workspace, Datastore, Dataset
@@ -156,7 +156,7 @@ Use the [`from_delimited_files()`](/python/api/azureml-core/azureml.data.dataset
156156

157157
See the [TabularDatasetFactory reference documentation](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory) for information about supported file formats, as well as syntax and design patterns such as [multiline support](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none--support-multi-line-false--empty-as-string-false--encoding--utf8--).
158158

159-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
159+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
160160

161161
The following code gets the existing workspace and the desired datastore by name. And then passes the datastore and file locations to the `path` parameter to create a new TabularDataset, `weather_ds`.
162162

articles/machine-learning/v1/how-to-secure-workspace-vnet.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ ms.custom: contperf-fy20q4, tracking-python, contperf-fy21q1, security, cliv1, s
1515

1616
# Secure an Azure Machine Learning workspace with virtual networks (v1)
1717

18-
[!INCLUDE [sdk/cli v1](../../includes/machine-learning-dev-v1.md)]
18+
[!INCLUDE [sdk/cli v1](../../../includes/machine-learning-dev-v1.md)]
1919

2020
> [!div class="op_single_selector" title1="Select the version of Azure Machine Learning SDK/CLI extension you are using:"]
2121
> * [v1](how-to-secure-workspace-vnet.md)

0 commit comments

Comments
 (0)