You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/v1/how-to-create-register-datasets.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -95,7 +95,7 @@ Create a TabularDataset with [the Python SDK](#create-a-tabulardataset) or [Azur
95
95
96
96
## Access datasets in a virtual network
97
97
98
-
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
98
+
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](how-to-secure-workspace-vnet.md#datastores-and-datasets).
99
99
100
100
101
101
## Create datasets from datastores
@@ -119,7 +119,7 @@ To create datasets from a datastore with the Python SDK:
119
119
120
120
Use the [`from_files()`](/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset.
121
121
122
-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
122
+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
123
123
124
124
```Python
125
125
from azureml.core import Workspace, Datastore, Dataset
@@ -156,7 +156,7 @@ Use the [`from_delimited_files()`](/python/api/azureml-core/azureml.data.dataset
156
156
157
157
See the [TabularDatasetFactory reference documentation](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory) for information about supported file formats, as well as syntax and design patterns such as [multiline support](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none--support-multi-line-false--empty-as-string-false--encoding--utf8--).
158
158
159
-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
159
+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
160
160
161
161
The following code gets the existing workspace and the desired datastore by name. And then passes the datastore and file locations to the `path` parameter to create a new TabularDataset, `weather_ds`.
0 commit comments