Skip to content

Commit 7161ec1

Browse files
Merge pull request #234591 from SturgeonMi/patch-23
Update how-to-access-data-interactive.md
2 parents c826f15 + 8f22b4b commit 7161ec1

File tree

1 file changed

+5
-4
lines changed

1 file changed

+5
-4
lines changed

articles/machine-learning/how-to-access-data-interactive.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,9 +41,8 @@ Typically the beginning of a machine learning project involves exploratory data
4141
> pip install -U azureml-fsspec mltable
4242
> ```
4343
44-
## Access data from a datastore URI, like a filesystem (preview)
44+
## Access data from a datastore URI, like a filesystem
4545
46-
[!INCLUDE [preview disclaimer](../../includes/machine-learning-preview-generic-disclaimer.md)]
4746
4847
An Azure Machine Learning datastore is a *reference* to an *existing* storage account on Azure. The benefits of creating and using a datastore include:
4948
@@ -69,9 +68,11 @@ uri = f'azureml://subscriptions/{subscription}/resourcegroups/{resource_group}/w
6968
```
7069
7170
These Datastore URIs are a known implementation of [Filesystem spec](https://filesystem-spec.readthedocs.io/en/latest/index.html) (`fsspec`): A unified pythonic interface to local, remote and embedded file systems and bytes storage.
71+
You can pip install the `azureml-fsspec`package and its dependency `azureml-dataprep` package. And then you can use the Azure Machine Learning Datastore implementation of `fsspec`.
7272
7373
The Azure Machine Learning Datastore implementation of `fsspec` automatically handles credential/identity passthrough used by the Azure Machine Learning datastore. This means you don't need to expose account keys in your scripts or do additional sign-in procedures on a compute instance.
7474
75+
7576
For example, you can directly use Datastore URIs in Pandas - below is an example of reading a CSV file:
7677
7778
```python
@@ -121,10 +122,10 @@ from azureml.fsspec import AzureMachineLearningFileSystem
121122
fs = AzureMachineLearningFileSystem('azureml://subscriptions/<subid>/resourcegroups/<rgname>/workspaces/<workspace_name>/datastore/datastorename')
122123

123124
# you can specify recursive as False to upload a file
124-
fs.upload(lpath='data/upload_files/crime-spring.csv', rpath='data/fsspec', recursive=False, **{'overwrite': MERGE_WITH_OVERWRITE})
125+
fs.upload(lpath='data/upload_files/crime-spring.csv', rpath='data/fsspec', recursive=False, **{'overwrite': 'MERGE_WITH_OVERWRITE'})
125126

126127
# you need to specify recursive as True to upload a folder
127-
fs.upload(lpath='data/upload_folder/', rpath='data/fsspec_folder', recursive=True, **{'overwrite': MERGE_WITH_OVERWRITE})
128+
fs.upload(lpath='data/upload_folder/', rpath='data/fsspec_folder', recursive=True, **{'overwrite': 'MERGE_WITH_OVERWRITE'})
128129
```
129130
`lpath` is the local path, and `rpath` is the remote path.
130131
If the folders you specify in `rpath` do not exist yet, we will create the folders for you.

0 commit comments

Comments
 (0)