Skip to content

Commit 720ea29

Browse files
authored
Merge pull request #202097 from daholste/daholste/remove_dupe_model_name
Remove duplicate maskrcnn_resnet50_fpn in model name list
2 parents c9fbc86 + 00bc62c commit 720ea29

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

articles/machine-learning/how-to-auto-train-image-models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -267,7 +267,7 @@ Task | Model algorithms | String literal syntax<br> ***`default_model`\**** den
267267
---|----------|----------
268268
Image classification<br> (multi-class and multi-label)| **MobileNet**: Light-weighted models for mobile applications <br> **ResNet**: Residual networks<br> **ResNeSt**: Split attention networks<br> **SE-ResNeXt50**: Squeeze-and-Excitation networks<br> **ViT**: Vision transformer networks| `mobilenetv2` <br>`resnet18` <br>`resnet34` <br> `resnet50` <br> `resnet101` <br> `resnet152` <br> `resnest50` <br> `resnest101` <br> `seresnext` <br> `vits16r224` (small) <br> ***`vitb16r224`\**** (base) <br>`vitl16r224` (large)|
269269
Object detection | **YOLOv5**: One stage object detection model <br> **Faster RCNN ResNet FPN**: Two stage object detection models <br> **RetinaNet ResNet FPN**: address class imbalance with Focal Loss <br> <br>*Note: Refer to [`model_size` hyperparameter](reference-automl-images-hyperparameters.md#model-specific-hyperparameters) for YOLOv5 model sizes.*| ***`yolov5`\**** <br> `fasterrcnn_resnet18_fpn` <br> `fasterrcnn_resnet34_fpn` <br> `fasterrcnn_resnet50_fpn` <br> `fasterrcnn_resnet101_fpn` <br> `fasterrcnn_resnet152_fpn` <br> `retinanet_resnet50_fpn`
270-
Instance segmentation | **MaskRCNN ResNet FPN**| `maskrcnn_resnet18_fpn` <br> `maskrcnn_resnet34_fpn` <br> ***`maskrcnn_resnet50_fpn`\**** <br> `maskrcnn_resnet101_fpn` <br> `maskrcnn_resnet152_fpn` <br>`maskrcnn_resnet50_fpn`
270+
Instance segmentation | **MaskRCNN ResNet FPN**| `maskrcnn_resnet18_fpn` <br> `maskrcnn_resnet34_fpn` <br> ***`maskrcnn_resnet50_fpn`\**** <br> `maskrcnn_resnet101_fpn` <br> `maskrcnn_resnet152_fpn`
271271

272272

273273
In addition to controlling the model algorithm, you can also tune hyperparameters used for model training. While many of the hyperparameters exposed are model-agnostic, there are instances where hyperparameters are task-specific or model-specific. [Learn more about the available hyperparameters for these instances](reference-automl-images-hyperparameters.md).

0 commit comments

Comments
 (0)