4
4
href : ../index.yml
5
5
- name : Overview (v1)
6
6
items :
7
- - name : Architecture & terms
7
+ - name : Architecture & terms
8
8
displayName : architecture, concepts, definitions, glossary
9
9
href : concept-azure-machine-learning-architecture.md
10
10
- name : Migrate from ML Studio (classic)
11
- items :
11
+ items :
12
12
- name : Migration overview
13
13
href : ../migrate-overview.md
14
14
- name : Migrate datasets
24
24
- name : Concepts (v1)
25
25
items :
26
26
- name : Work with data
27
- items :
27
+ items :
28
28
- name : Data access
29
29
href : concept-data.md
30
30
- name : Studio network data access
31
- href : concept-network-data-access.md
31
+ href : concept-network-data-access.md
32
32
- name : Automated ML overview
33
33
displayName : automl, auto ml
34
34
href : concept-automated-ml-v1.md
47
47
items :
48
48
- name : Python get started (Day 1)
49
49
expanded : true
50
- items :
50
+ items :
51
51
- name : 1. Run a Python script
52
52
href : tutorial-1st-experiment-hello-world.md
53
53
- name : 2. Train your model
57
57
- name : " Build a training pipeline (Python)"
58
58
href : " tutorial-pipeline-python-sdk.md"
59
59
- name : Samples (v1)
60
- items :
60
+ items :
61
61
- name : Jupyter Notebooks
62
62
displayName : example, examples, server, jupyter, azure notebooks, python, notebook, github
63
63
href : samples-notebooks-v1.md
101
101
- name : Work with data
102
102
items :
103
103
- name : Access data
104
- items :
104
+ items :
105
105
- name : Connect to Azure storage with datastores
106
106
displayName : blob, get, fileshare, access, mount, download, data lake, datastore
107
107
href : how-to-access-data.md
129
129
displayName : data, labels, torchvision
130
130
href : how-to-use-labeled-dataset.md
131
131
- name : Get & prepare data
132
- items :
132
+ items :
133
133
- name : Data ingestion with Azure Data Factory
134
134
displayName : data, ingestion, adf
135
135
href : how-to-data-ingest-adf.md
143
143
displayName : designer, data, import, dataset, datastore
144
144
href : how-to-designer-import-data.md
145
145
- name : Compliance
146
- items :
146
+ items :
147
147
- name : Export and delete data
148
148
displayName : GDPR
149
149
href : how-to-export-delete-data.md
150
150
- name : Train models
151
- items :
151
+ items :
152
152
- name : Configure & submit training run
153
153
displayName : run config, script run config, scriptrunconfig, compute target, dsvm, Data Science Virtual Machine, local, cluster, ACI, container instance, Databricks, data lake, lake, HDI, HDInsight
154
154
href : how-to-set-up-training-targets.md
172
172
- name : Set up AutoML to train computer vision models with Python
173
173
displayName : auto ML, automl, SDK
174
174
href : how-to-auto-train-image-models-v1.md
175
+ - name : Auto-train a small object detection model
176
+ displayName : computer vision, image, image model
177
+ href : how-to-use-automl-small-object-detect-v1.md
175
178
- name : Local inference using ONNX
176
179
displayName : SDK, automl
177
180
href : how-to-inference-onnx-automl-image-models-v1.md
178
- - name : Track experiments with MLflow
181
+ - name : Track experiments with MLflow
179
182
displayName : log, monitor, metrics, model registry, register
180
- href : how-to-use-mlflow.md
183
+ href : how-to-use-mlflow.md
181
184
- name : Log & view metrics
182
185
href : how-to-log-view-metrics.md
183
186
- name : Interpret ML models
211
214
displayName : update hot reload model mounting
212
215
href : how-to-deploy-update-web-service.md
213
216
- name : Deployment targets
214
- items :
217
+ items :
215
218
- name : Deploy locally
216
219
href : how-to-deploy-local.md
217
220
- name : Deploy locally on compute instance
238
241
displayName : swagger inference schema binary cors
239
242
href : how-to-deploy-advanced-entry-script.md
240
243
- name : Prebuilt Docker images
241
- items :
244
+ items :
242
245
- name : Python extensibility
243
246
href : how-to-prebuilt-docker-images-inference-python-extensibility.md
244
247
- name : Dockerfile extensibility
245
248
href : how-to-extend-prebuilt-docker-image-inference.md
246
249
- name : Troubleshoot prebuilt docker images
247
250
href : how-to-troubleshoot-prebuilt-docker-image-inference.md
248
251
- name : Monitor web services
249
- items :
252
+ items :
250
253
- name : Collect & evaluate model data
251
254
displayName : track production
252
255
href : how-to-enable-data-collection.md
262
265
items :
263
266
- name : Build & use ML pipelines
264
267
displayName : pipelines
265
- items :
268
+ items :
266
269
- name : Create ML pipelines (Python)
267
270
href : how-to-create-machine-learning-pipelines.md
268
271
- name : Moving data into and between ML pipeline steps (Python)
276
279
href : how-to-use-synapsesparkstep.md
277
280
- name : Trigger a pipeline
278
281
href : how-to-trigger-published-pipeline.md
279
- - name : Convert notebook code into Python scripts
282
+ - name : Convert notebook code into Python scripts
280
283
displayName : mlops, mlopspython, production
281
284
href : how-to-convert-ml-experiment-to-production.md
282
285
- name : Troubleshoot & debug (v1)
283
- items :
286
+ items :
284
287
- name : Pipeline issues
285
- items :
288
+ items :
286
289
- name : Troubleshoot pipelines
287
290
displayName : designer
288
291
href : how-to-debug-pipelines.md
292
295
displayName : debug_batch consume pipeline parallelrunstep inference
293
296
href : how-to-debug-parallel-run-step.md
294
297
- name : Reference (v1)
295
- items :
298
+ items :
296
299
- name : Machine learning CLI pipeline YAML reference
297
300
href : reference-pipeline-yaml.md
0 commit comments