Skip to content

Commit 72287a7

Browse files
author
Sandeep Nair
committed
Improve TOC Title
1 parent 4ae8c0e commit 72287a7

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

articles/cosmos-db/mongodb/vcore/TOC.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
items:
1717
- name: Node.js
1818
href: tutorial-nodejs-web-app.md
19-
- name: Build AI Apps with Azure Cosmos DB vCore Vector Search
19+
- name: Build AI Apps with Vector Search
2020
href: tutorial-vector-search-in-rag.md
2121
- name: Concepts
2222
items:

articles/cosmos-db/mongodb/vcore/tutorial-vector-search-in-rag.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
---
2-
title: AI Apps with Azure Cosmos DB vCore Vector Search
3-
titleSuffix: AI Apps with Azure Cosmos DB vCore Vector Search
4-
description: Enhance AI-powered Applications with Retrieval Augmented Generation (RAG) using Azure Cosmos DB vCore Vector Search.
2+
title: Build AI Apps with Azure Cosmos DB for MongoDB vCore Vector Search
3+
titleSuffix: Build AI Apps with Azure Cosmos DB for MongoDB vCore Vector Search
4+
description: Enhance AI-powered Applications with Retrieval Augmented Generation (RAG) using Azure Cosmos DB for MongoDB vCore Vector Search.
55
ms.service: cosmos-db
66
ms.subservice: mongodb-vcore
77
ms.topic: tutorial
@@ -11,7 +11,7 @@ ms.reviewer: sandnair
1111
ms.date: 08/22/2023
1212
---
1313

14-
# AI Apps with Azure Cosmos DB vCore Vector Search
14+
# AI Apps with Azure Cosmos DB for MongoDB vCore Vector Search
1515

1616
[!INCLUDE[MongoDB vCore](../../includes/appliesto-mongodb-vcore.md)]
1717

@@ -34,7 +34,7 @@ Retrieval Augmented Generation harnesses external knowledge and models to effici
3434

3535
RAG's power is truly harnessed through the native vector search capability within Azure Cosmos DB for MongoDB vCore. This enables a seamless fusion of AI-focused applications with stored data in Azure Cosmos DB. Vector search optimally stores, indexes, and searches high-dimensional vector data directly within Azure Cosmos DB for MongoDB vCore alongside other application data. This eliminates the need to migrate data to costlier alternatives for vector search functionality.
3636

37-
Code Samples and Tutorials:
37+
## Code Samples and Tutorials
3838

3939
1. [**.NET Retail Chatbot Demo**](https://github.com/AzureCosmosDB/VectorSearchAiAssistant/tree/mongovcorev2): Learn how to build a chatbot using .NET that demonstrates RAG's potential in a retail context.
4040
2. [**.NET Tutorial - Recipe Chatbot**](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/C%23/CosmosDB-MongoDBvCore): Walk through creating a recipe chatbot using .NET, showcasing RAG's application in a culinary scenario.

0 commit comments

Comments
 (0)