Skip to content

Commit 748ab87

Browse files
committed
fixed links
1 parent 9959a06 commit 748ab87

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

articles/search/cognitive-search-skill-azure-openai-embedding.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ Microsoft.Skills.Text.AzureOpenAIEmbeddingSkill
3030

3131
## Data limits
3232

33-
The maximum size of a text input should be 8,000 tokens. If input exceeds the maximum allowed, the model throws an invalid request error. For more information, see the [tokens](/azure/ai-services/openai/overview#tokens) key concept in the Azure OpenAI documentation. Consider using the [Text Split skill](cognitive-search-skill-textplit.md) if you need data chunking.
33+
The maximum size of a text input should be 8,000 tokens. If input exceeds the maximum allowed, the model throws an invalid request error. For more information, see the [tokens](/azure/ai-services/openai/overview#tokens) key concept in the Azure OpenAI documentation. Consider using the [Text Split skill](cognitive-search-skill-textsplit.md) if you need data chunking.
3434

3535
## Skill parameters
3636

@@ -102,7 +102,7 @@ For the given input text, a vectorized embedding output is produced.
102102
}
103103
```
104104

105-
The output resides in memory. To send this output to a field in the search index, you must define an [outputFieldMapping](cognitive-search-output-field-mapping.md) that maps the vectorized embedding output (which is an array) to a [vector field](vector-search-how-to-create.md). Assuming the skill output resides in the document's **embedding** node, and **content_vector** is the field in the search index, the outputFieldMapping in indexer should look like:
105+
The output resides in memory. To send this output to a field in the search index, you must define an [outputFieldMapping](cognitive-search-output-field-mapping.md) that maps the vectorized embedding output (which is an array) to a [vector field](vector-search-how-to-create-index.md). Assuming the skill output resides in the document's **embedding** node, and **content_vector** is the field in the search index, the outputFieldMapping in indexer should look like:
106106

107107
```json
108108
"outputFieldMappings": [

articles/search/vector-search-how-to-chunk-documents.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ The following examples demonstrate how chunking strategies are applied to [NASA'
6464

6565
### Text Split skill example
6666

67-
Integrated data chunking through [Text Split skill](cognitive-search-skill-textsplit.dd) is in public preview. Use a preview REST API or an Azure SDK beta package for this scenario.
67+
Integrated data chunking through [Text Split skill](cognitive-search-skill-textsplit.md) is in public preview. Use a preview REST API or an Azure SDK beta package for this scenario.
6868

6969
This section describes the built-in data chunking using a skills-driven approach and [Text Split skill parameters](cognitive-search-skill-textsplit.md#skill-parameters).
7070

0 commit comments

Comments
 (0)