Skip to content

Commit 78e6166

Browse files
authored
Update articles/ai-services/openai/concepts/understand-embeddings.md
1 parent d05c7c7 commit 78e6166

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

articles/ai-services/openai/concepts/understand-embeddings.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,4 +40,4 @@ An alternative method of identifying similar documents is to count the number of
4040
* Learn more about using Azure OpenAI and embeddings to perform document search with our [embeddings tutorial](../tutorials/embeddings.md).
4141
* Store your embeddings and perform vector (similarity) search using [Azure Cosmos DB for MongoDB vCore](/azure/cosmos-db/mongodb/vcore/vector-search), [Azure Cosmos DB for NoSQL](/azure/cosmos-db/rag-data-openai) , [Azure SQL Database](/azure/azure-sql/database/ai-artificial-intelligence-intelligent-applications?view=azuresql&preserve-view=true#vector-search) or [Azure Database for PostgreSQL - Flexible Server](/azure/postgresql/flexible-server/how-to-use-pgvector).
4242
* Use an Eventhouse in Real-Time Intelligence in Microsoft Fabric as a [Vector database](/fabric/real-time-intelligence/vector-database)
43-
* Use the [series_cosine_similarity](/kusto/query/series-cosine-similarity-function?view=microsoft-fabric) function for similarity search.
43+
* Use the [series_cosine_similarity](/kusto/query/series-cosine-similarity-function?view=microsoft-fabric&preserve-view=true) function for similarity search.

0 commit comments

Comments
 (0)