Skip to content

Commit 79b65f0

Browse files
authored
Merge pull request #97713 from john-par/1614298-clean-up-broken-azure-docs-pr-links-12-03
1614298 clean up broken azure docs pr links 12-03
2 parents ac87bf7 + 27fb3ae commit 79b65f0

14 files changed

+25
-25
lines changed

articles/active-directory/develop/msal-python-adfs-support.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ ms.collection: M365-identity-device-management
2424

2525
# Active Directory Federation Services support in MSAL for Python
2626

27-
Active Directory Federation Services (AD FS) in Windows Server enables you to add OpenID Connect and OAuth 2.0 based authentication and authorization to your apps by using the Microsoft Authentication Library (MSAL) for Python. Using the MSAL for Python library, your app can authenticate users directly against AD FS. For more information about scenarios, see [AD FS Scenarios for Developers](https://docs.microsoft.com/windows-server/identity/ad-fs/overview/ad-fs-scenarios-for-developers).
27+
Active Directory Federation Services (AD FS) in Windows Server enables you to add OpenID Connect and OAuth 2.0 based authentication and authorization to your apps by using the Microsoft Authentication Library (MSAL) for Python. Using the MSAL for Python library, your app can authenticate users directly against AD FS. For more information about scenarios, see [AD FS Scenarios for Developers](/windows-server/identity/ad-fs/ad-fs-development).
2828

2929
There are usually two ways of authenticating against AD FS:
3030

articles/active-directory/fundamentals/active-directory-ops-guide-auth.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -358,7 +358,7 @@ Having access to sign-in activity, audits and risk events for Azure AD is crucia
358358
- [Get data using the Azure AD Reporting API with certificates](https://docs.microsoft.com/azure/active-directory/active-directory-reporting-api-with-certificates)
359359
- [Microsoft Graph for Azure Active Directory Identity Protection](https://docs.microsoft.com/azure/active-directory/active-directory-identityprotection-graph-getting-started)
360360
- [Office 365 Management Activity API reference](https://msdn.microsoft.com/office-365/office-365-management-activity-api-reference)
361-
- [How to use the Azure Active Directory Power BI Content Pack](https://docs.microsoft.com/azure/active-directory/active-directory-reporting-power-bi-content-pack-how-to)
361+
- [How to use the Azure Active Directory Power BI Content Pack](../reports-monitoring/howto-use-azure-monitor-workbooks.md)
362362

363363
## Summary
364364

articles/active-directory/saas-apps/ringcentral-provisioning-tutorial.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ Before configuring RingCentral for automatic user provisioning with Azure AD, yo
9090
This section guides you through the steps to configure the Azure AD provisioning service to create, update, and disable users and/or groups in RingCentral based on user and/or group assignments in Azure AD.
9191

9292
> [!TIP]
93-
> You may also choose to enable SAML-based single sign-on for RingCentral , following the instructions provided in the [RingCentral Single sign-on tutorial](https://docs.microsoft.comazure/active-directory/saas-apps/ringcentral-tutorial). Single sign-on can be configured independently of automatic user provisioning, though these two features compliment each other.
93+
> You may also choose to enable SAML-based single sign-on for RingCentral , following the instructions provided in the [RingCentral Single sign-on tutorial](ringcentral-tutorial.md). Single sign-on can be configured independently of automatic user provisioning, though these two features compliment each other.
9494
9595
> [!NOTE]
9696
> To learn more about RingCentral's SCIM endpoint, refer to [RingCentral API Reference](https://developers.ringcentral.com/api-reference).

articles/azure-maps/index.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ sections:
4545
style: unordered
4646
items:
4747
- html: <a href="/azure/azure-maps/tutorial-geofence">Set up a geofence</a>
48-
- html: <a href="/azure-maps/tutorial-iot-hub-maps">Spatial analytics</a>
48+
- html: <a href="/azure/azure-maps/tutorial-iot-hub-maps">Spatial analytics</a>
4949
- html: <a href=/azure/azure-maps/tutorial-ev-routing">EV routing using Azure Notebooks (Python)</a>
5050
- title: Reference
5151
items:

articles/expressroute/expressroute-locations.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ The following table shows locations by service provider. If you want to view ava
7878
| **[Ascenty Data Centers](https://www.ascenty.com/en/cloud/microsoft-express-route)** |Supported |Supported |Sao Paulo |
7979
| **[AT&T NetBond](https://www.synaptic.att.com/clouduser/html/productdetail/ATT_NetBond.htm)** |Supported |Supported |Amsterdam, Chicago, Dallas, London, Silicon Valley, Singapore, Sydney, Tokyo, Toronto, Washington DC |
8080
| **[Bell Canada](https://business.bell.ca/shop/enterprise/cloud-connect-access-to-cloud-partner-services)** |Supported |Supported |Montreal, Toronto, Quebec City |
81-
| **[British Telecom](https://www.globalservices.bt.com/en/solutions/products/bt-compute-for-microsoft-azure)** |Supported |Supported |Amsterdam, Hong Kong SAR, Johannesburg, London, Newport(Wales), Sao Paulo, Silicon Valley, Singapore, Sydney, Tokyo, Washington DC |
81+
| **[British Telecom](https://www.globalservices.bt.com/en/solutions/products/cloud-connect-azure)** |Supported |Supported |Amsterdam, Hong Kong SAR, Johannesburg, London, Newport(Wales), Sao Paulo, Silicon Valley, Singapore, Sydney, Tokyo, Washington DC |
8282
| **[C3ntro](https://www.c3ntro.com/data1/express-route1.php)** |Supported |Supported |Miami |
8383
| **CDC** | Supported | Supported | Canberra, Canberra2 |
8484
| **[CenturyLink Cloud Connect](https://www.centurylink.com/cloudconnect)** |Supported |Supported |Amsterdam2, Chicago, Hong Kong, Las Vegas, New York, Paris, San Antonio, Silicon Valley, Tokyo, Toronto, Washington DC |
@@ -175,7 +175,7 @@ Azure national clouds are isolated from each other and from global commerical Az
175175
| **Service provider** | **Microsoft Azure** | **Office 365** | **Locations** |
176176
| --- | --- | --- | --- |
177177
| **China Telecom** |Supported |Not Supported |Beijing, Beijing2, Shanghai, Shanghai2 |
178-
| **[GDS](http://en.gds-services.com/news_detail/newsId=21.html)** |Supported |Not Supported |Beijing2, Shanghai2 |
178+
| **[GDS](http://www.gds-services.com/en/about_2.html)** |Supported |Not Supported |Beijing2, Shanghai2 |
179179

180180
To learn more, see [ExpressRoute in China](http://www.windowsazure.cn/home/features/expressroute/).
181181

articles/hdinsight/spark/apache-spark-run-machine-learning-automl.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ You can also register the datastore with the workspace using a one-time registra
6565

6666
## Experiment submission
6767

68-
In the [automated machine learning configuration](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlconfig), the property `spark_context` should be set for the package to run on distributed mode. The property `concurrent_iterations`, which is the maximum number of iterations executed in parallel, should be set to a number less than the executor cores for the Spark app.
68+
In the [automated machine learning configuration](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig), the property `spark_context` should be set for the package to run on distributed mode. The property `concurrent_iterations`, which is the maximum number of iterations executed in parallel, should be set to a number less than the executor cores for the Spark app.
6969

7070
## Next steps
7171

articles/machine-learning/service/azure-machine-learning-release-notes.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -216,7 +216,7 @@ See the [package website](https://azure.github.io/azureml-sdk-for-r) for complet
216216
+ Change [`Dataset.get_by_id`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29#get-by-id-workspace--id-) to return registration name and version if the dataset is registered.
217217
+ Fix a bug that ScriptRunConfig with dataset as argument cannot be used repeatedly to submit experiment run.
218218
+ Datasets retrieved during a run will be tracked and can be seen in the run details page or by calling [`run.get_details()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29#get-details--) after the run is complete.
219-
+ Allow intermediate data in Azure Machine Learning Pipeline to be converted to tabular dataset and used in [`AutoMLStep`](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlstep).
219+
+ Allow intermediate data in Azure Machine Learning Pipeline to be converted to tabular dataset and used in [`AutoMLStep`](/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlstep).
220220
+ Added support for deploying and packaging supported models (ONNX, scikit-learn, and TensorFlow) without an InferenceConfig instance.
221221
+ Added overwrite flag for service deployment (ACI and AKS) in SDK and CLI. If provided, will overwrite the existing service if service with name already exists. If service doesn't exist, will create new service.
222222
+ Models can be registered with two new frameworks, Onnx and Tensorflow. Model registration accepts sample input data, sample output data and resource configuration for the model.
@@ -233,7 +233,7 @@ See the [package website](https://azure.github.io/azureml-sdk-for-r) for complet
233233
+ Various bug fixes
234234
+ [**azureml-pipeline-core**](https://docs.microsoft.com/python/api/azureml-pipeline-core)
235235
+ azureml-dataprep is no longer needed to submit an Azure Machine Learning Pipeline run from the pipeline `yaml` file.
236-
+ [**azureml-train-automl**](https://docs.microsoft.com/python/api/azureml-train-automl)
236+
+ [**azureml-train-automl**](/python/api/azureml-train-automl-runtime/)
237237
+ Add azureml-defaults to auto generated conda env to solve the model deployment failure
238238
+ AutoML remote training now includes azureml-defaults to allow reuse of training env for inference.
239239
+ **azureml-train-core**
@@ -345,7 +345,7 @@ See the [package website](https://azure.github.io/azureml-sdk-for-r) for complet
345345
+ Improved performance for large Pipeline creation.
346346
+ **[azureml-train-core](https://docs.microsoft.com/python/api/azureml-train-core)**
347347
+ Added TensorFlow 2.0 support in [TensorFlow](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow) Estimator.
348-
+ **[azureml-train-automl](https://docs.microsoft.com/python/api/azureml-train-automl)**
348+
+ **[azureml-train-automl](/python/api/azureml-train-automl-runtime/)**
349349
+ The parent run will no longer be failed when setup iteration failed, as the orchestration already takes care of it.
350350
+ Added local-docker and local-conda support for AutoML experiments
351351
+ Added local-docker and local-conda support for AutoML experiments.
@@ -369,12 +369,12 @@ The Experiment tab in the [new workspace portal](https://ml.azure.com) has been
369369
+ Added curated environments. These environments have been pre-configured with libraries for common machine learning tasks, and have been pre-build and cached as Docker images for faster execution. They appear by default in [Workspace](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace%28class%29)'s list of environment, with prefix "AzureML".
370370

371371
+ **azureml-train-automl**
372-
+ **[azureml-train-automl](https://docs.microsoft.com/python/api/azureml-train-automl)**
372+
+ **[azureml-train-automl](/python/api/azureml-train-automl-runtime/)**
373373
+ Added the ONNX conversion support for the ADB and HDI
374374

375375
+ **Preview features**
376376
+ **azureml-train-automl**
377-
+ **[azureml-train-automl](https://docs.microsoft.com/python/api/azureml-train-automl)**
377+
+ **[azureml-train-automl](/python/api/azureml-train-automl-runtime/)**
378378
+ Supported BERT and BiLSTM as text featurizer (preview only)
379379
+ Supported featurization customization for column purpose and transformer parameters (preview only)
380380
+ Supported raw explanations when user enables model explanation during training (preview only)
@@ -386,7 +386,7 @@ The Experiment tab in the [new workspace portal](https://ml.azure.com) has been
386386
+ **Bug fixes and improvements**
387387
+ **azureml-automl-core**
388388
+ Introduced FeaturizationConfig to AutoMLConfig and AutoMLBaseSettings
389-
+ Introduced FeaturizationConfig to [AutoMLConfig](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlconfig) and AutoMLBaseSettings
389+
+ Introduced FeaturizationConfig to [AutoMLConfig](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig) and AutoMLBaseSettings
390390
+ Override Column Purpose for Featurization with given column and feature type
391391
+ Override transformer parameters
392392
+ Added deprecation message for explain_model() and retrieve_model_explanations()
@@ -431,9 +431,9 @@ The Experiment tab in the [new workspace portal](https://ml.azure.com) has been
431431
+ **[azureml-pipeline-steps](https://docs.microsoft.com/python/api/azureml-pipeline-steps)**
432432
+ Added [RScriptStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.rscriptstep) to support R script run via AML pipeline.
433433
+ Fixed metadata parameters parsing in [AzureBatchStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.azurebatchstep) which was causing the error message "assignment for parameter SubscriptionId is not specified".
434-
+ **[azureml-train-automl](https://docs.microsoft.com/python/api/azureml-train-automl)**
434+
+ **[azureml-train-automl](/python/api/azureml-train-automl-runtime/)**
435435
+ Supported training_data, validation_data, label_column_name, weight_column_name as data input format.
436-
+ Added deprecation message for [explain_model()](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlexplainer#explain-model-fitted-model--x-train--x-test--best-run-none--features-none--y-train-none----kwargs-) and [retrieve_model_explanations()](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlexplainer#retrieve-model-explanation-child-run-).
436+
+ Added deprecation message for [explain_model()](/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlexplainer#explain-model-fitted-model--x-train--x-test--best-run-none--features-none--y-train-none----kwargs-) and [retrieve_model_explanations()](/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlexplainer#retrieve-model-explanation-child-run-).
437437

438438

439439
## 2019-09-16

articles/machine-learning/service/concept-automated-ml.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ Additional advanced preprocessing and featurization are also available, such as
9696

9797
+ Azure Machine Learning studio : Selecting the **View featurization settings** in the **Configuration Run** section [with these steps](how-to-create-portal-experiments.md).
9898

99-
+ Python SDK: Specifying `"feauturization": auto' / 'off' / FeaturizationConfig` for the [`AutoMLConfig` class](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py).
99+
+ Python SDK: Specifying `"feauturization": auto' / 'off' / FeaturizationConfig` for the [`AutoMLConfig` class](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig).
100100

101101
## Prevent over-fitting
102102

articles/machine-learning/service/how-to-auto-train-forecast.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ ms.date: 11/04/2019
1818
In this article, you learn how to train a time-series forecasting regression model using automated machine learning in Azure Machine Learning. Configuring a forecasting model is similar to setting up a standard regression model using automated machine learning, but certain configuration options and pre-processing steps exist for working with time-series data. The following examples show you how to:
1919

2020
* Prepare data for time series modeling
21-
* Configure specific time-series parameters in an [`AutoMLConfig`](/python/api/azureml-train-automl/azureml.train.automl.automlconfig) object
21+
* Configure specific time-series parameters in an [`AutoMLConfig`](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig) object
2222
* Run predictions with time-series data
2323

2424
> [!VIDEO https://www.microsoft.com/videoplayer/embed/RE2X1GW]
@@ -122,7 +122,7 @@ The `AutoMLConfig` object defines the settings and data necessary for an automat
122122
|`target_rolling_window_size`|*n* historical periods to use to generate forecasted values, <= training set size. If omitted, *n* is the full training set size. Specify this parameter when you only want to consider a certain amount of history when training the model.||
123123
|`enable_dnn`|Enable Forecasting DNNs.||
124124

125-
See the [reference documentation](https://docs.microsoft.com/python/api/azureml-train-automl/azureml.train.automl.automlconfig?view=azure-ml-py) for more information.
125+
See the [reference documentation](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig) for more information.
126126

127127
Create the time-series settings as a dictionary object. Set the `time_column_name` to the `day_datetime` field in the data set. Define the `grain_column_names` parameter to ensure that **two separate time-series groups** are created for the data; one for store A and B. Lastly, set the `max_horizon` to 50 in order to predict for the entire test set. Set a forecast window to 10 periods with `target_rolling_window_size`, and specify a single lag on the target values for 2 periods ahead with the `target_lags` parameter.
128128

articles/machine-learning/service/how-to-deploy-functions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -231,7 +231,7 @@ At this point, the function app begins loading the image.
231231
232232
## Next steps
233233
234-
* Learn to configure your Functions App in the [Functions](https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-imag) documentation.
234+
* Learn to configure your Functions App in the [Functions](/azure/azure-functions/functions-create-function-linux-custom-image) documentation.
235235
* Learn more about Blob storage triggers [Azure Blob storage bindings](https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-blob).
236236
* [Deploy your model to Azure App Service](how-to-deploy-app-service.md).
237237
* [Consume a ML Model deployed as a web service](how-to-consume-web-service.md)

0 commit comments

Comments
 (0)