Skip to content

Commit 7c39fd1

Browse files
committed
Fixing filepaths to avoid redirection
1 parent f683a5a commit 7c39fd1

13 files changed

+25
-25
lines changed

articles/databox-online/azure-stack-edge-technical-specifications-compliance.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ A Field Programmable Gate Array (FPGA) is included on every Azure Stack Edge dev
3030

3131
| Specification | Value |
3232
|-------------------------|----------------------------|
33-
| FPGA | Intel Arria 10 <br> Available Deep Neural Network (DNN) models are the same as those [supported by cloud FPGA instances](https://docs.microsoft.com/azure/machine-learning/service/how-to-deploy-fpga-web-service#whats-supported-on-azure).|
33+
| FPGA | Intel Arria 10 <br> Available Deep Neural Network (DNN) models are the same as those [supported by cloud FPGA instances](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-fpga-web-service#whats-supported-on-azure).|
3434

3535

3636
## Power supply unit specifications

articles/event-grid/event-schema-machine-learning.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -263,5 +263,5 @@ The data object has the following properties for each event type:
263263

264264
* For an introduction to Azure Event Grid, see [What is Event Grid?](overview.md)
265265
* For more information about creating an Azure Event Grid subscription, see [Event Grid subscription schema](subscription-creation-schema.md)
266-
* For an introduction to using Azure Event Grid with Azure Machine Learning, see [Consume Azure Machine Learning events](/azure/machine-learning/service/concept-event-grid-integration)
267-
* For an example of using Azure Event Grid with Azure Machine Learning, see [Create event driven machine learning workflows](/azure/machine-learning/service/how-to-use-event-grid)
266+
* For an introduction to using Azure Event Grid with Azure Machine Learning, see [Consume Azure Machine Learning events](/azure/machine-learning/concept-event-grid-integration)
267+
* For an example of using Azure Event Grid with Azure Machine Learning, see [Create event driven machine learning workflows](/azure/machine-learning/how-to-use-event-grid)

articles/machine-learning/breadcrumb/toc.yml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919
items:
2020
- name: Service
2121
tocHref: /azure/open-datasets/
22-
topicHref: /azure/machine-learning/service/index
22+
topicHref: /azure/machine-learning/index
2323
items:
2424
- name: Open Datasets
2525
tocHref: /azure/open-datasets/
@@ -35,7 +35,7 @@
3535
items:
3636
- name: Service
3737
tocHref: /azure/iot-edge/
38-
topicHref: /azure/machine-learning/service/index
38+
topicHref: /azure/machine-learning/index
3939
items:
4040
- name: IoT Edge
4141
tocHref: /azure/iot-edge/
@@ -51,7 +51,7 @@
5151
items:
5252
- name: Service
5353
tocHref: /azure/architecture/data-guide/technology-choices/
54-
topicHref: /azure/machine-learning/service/index
54+
topicHref: /azure/machine-learning/index
5555
items:
5656
- name: Data Architecture Guide
5757
tocHref: /azure/architecture/data-guide/
@@ -67,7 +67,7 @@
6767
items:
6868
- name: Service
6969
tocHref: /azure/devops/pipelines/
70-
topicHref: /azure/machine-learning/service/index
70+
topicHref: /azure/machine-learning/index
7171
items:
7272
- name: Pipelines
7373
tocHref: /azure/devops/pipelines/languages/

articles/machine-learning/how-to-select-algorithms.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -145,6 +145,6 @@ You can also use the [Permutation Feature Importance module](https://docs.micros
145145

146146
## Next steps
147147

148-
- [Learn more about Azure Machine Learning designer](https://docs.microsoft.com/azure/machine-learning/service/concept-designer?WT.mc_id=docs-article-lazzeri)
148+
- [Learn more about Azure Machine Learning designer](https://docs.microsoft.com/azure/machine-learning/concept-designer?WT.mc_id=docs-article-lazzeri)
149149
- For descriptions of all the machine learning algorithms available in Azure Machine Learning designer, see [Machine Learning designer algorithm and module reference](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/module-reference?WT.mc_id=docs-article-lazzeri)
150-
- To explore the relationship between deep learning, machine learning, and AI, see [Deep Learning vs. Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/concept-deep-learning-vs-machine-learning?WT.mc_id=docs-article-lazzeri)
150+
- To explore the relationship between deep learning, machine learning, and AI, see [Deep Learning vs. Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-deep-learning-vs-machine-learning?WT.mc_id=docs-article-lazzeri)

articles/machine-learning/how-to-troubleshoot-deployment.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -19,12 +19,12 @@ Learn how to work around or solve common Docker deployment errors with Azure Con
1919

2020
When deploying a model in Azure Machine Learning, the system performs a number of tasks.
2121

22-
The recommended and the most up to date approach for model deployment is via the [Model.deploy()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) API using an [Environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments) object as an input parameter. In this case our service will create a base docker image for you during deployment stage and mount the required models all in one call. The basic deployment tasks are:
22+
The recommended and the most up to date approach for model deployment is via the [Model.deploy()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) API using an [Environment](how-to-use-environments.md) object as an input parameter. In this case our service will create a base docker image for you during deployment stage and mount the required models all in one call. The basic deployment tasks are:
2323

2424
1. Register the model in the workspace model registry.
2525

2626
2. Define Inference Configuration:
27-
1. Create an [Environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments) object based on the dependencies you specify in the environment yaml file or use one of our procured environments.
27+
1. Create an [Environment](how-to-use-environments.md) object based on the dependencies you specify in the environment yaml file or use one of our procured environments.
2828
2. Create an inference configuration (InferenceConfig object) based on the environment and the scoring script.
2929

3030
3. Deploy the model to Azure Container Instance (ACI) service or to Azure Kubernetes Service (AKS).
@@ -45,7 +45,7 @@ Learn more about this process in the [Model Management](concept-model-management
4545

4646
If you run into any issue, the first thing to do is to break down the deployment task (previous described) into individual steps to isolate the problem.
4747

48-
Assuming you are using the new/recommended deployment method via [Model.deploy()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) API with an [Environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments) object as an input parameter, your code can be broken down into three major steps:
48+
Assuming you are using the new/recommended deployment method via [Model.deploy()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) API with an [Environment](how-to-use-environments.md) object as an input parameter, your code can be broken down into three major steps:
4949

5050
1. Register the model. Here is some sample code:
5151

articles/machine-learning/toc.yml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@
8686
- name: End-to-end MLOps examples
8787
href: https://github.com/microsoft/MLOps
8888
- name: Open Datasets (public)
89-
href: /azure/open-datasets/samples?context=azure/machine-learning/service/context/ml-context
89+
href: /azure/open-datasets/samples?context=azure/machine-learning/context/ml-context
9090
- name: Concepts
9191
items:
9292
- name: Plan and manage costs
@@ -343,7 +343,7 @@
343343
displayName: functions app
344344
href: how-to-deploy-functions.md
345345
- name: Azure IoT Edge devices
346-
href: /azure/iot-edge/tutorial-deploy-machine-learning?context=azure/machine-learning/service/context/ml-context
346+
href: /azure/iot-edge/tutorial-deploy-machine-learning?context=azure/machine-learning/context/ml-context
347347
- name: FPGA inference
348348
href: how-to-deploy-fpga-web-service.md
349349
- name: Custom Docker images
@@ -385,7 +385,7 @@
385385
href: how-to-debug-pipelines-application-insights.md
386386
- name: 'Azure Pipelines for CI/CD'
387387
displayName: continuous, integration, delivery
388-
href: /azure/devops/pipelines/targets/azure-machine-learning?context=azure/machine-learning/service/context/ml-context
388+
href: /azure/devops/pipelines/targets/azure-machine-learning?context=azure/machine-learning/context/ml-context
389389
- name: 'Designer transform data'
390390
displayName: pipeline
391391
href: how-to-designer-transform-data.md
@@ -458,7 +458,7 @@
458458
- name: Stack Overflow
459459
href: https://stackoverflow.com/questions/tagged/azure-machine-learning-service
460460
- name: Compare our ML products
461-
href: /azure/architecture/data-guide/technology-choices/data-science-and-machine-learning?context=azure/machine-learning/service/context/ml-context
461+
href: /azure/architecture/data-guide/technology-choices/data-science-and-machine-learning?context=azure/machine-learning/context/ml-context
462462
- name: What happened to Workbench
463463
displayName: desktop, ui, Workbench, upgrade, update, transfer
464464
href: overview-what-happened-to-workbench.md

articles/open-datasets/index.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,9 +34,9 @@ landingContent:
3434
- linkListType: tutorial
3535
links:
3636
- text: Build a regression model with automated machine learning
37-
url: /azure/machine-learning/service/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context
37+
url: /azure/machine-learning/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context
3838
- text: Enrich an image classification model in Azure Machine Learning
39-
url: /azure/machine-learning/service/tutorial-train-models-with-aml?context=azure/open-datasets/context/open-datasets-context
39+
url: /azure/machine-learning/tutorial-train-models-with-aml?context=azure/open-datasets/context/open-datasets-context
4040

4141
# REFERENCE
4242
- title: Explore reference content

articles/open-datasets/overview-what-are-open-datasets.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,5 +54,5 @@ If you can't find the data you want, email us to [request a dataset](mailto:aod@
5454

5555
## Next steps
5656
* [Sample notebook](samples.md)
57-
* [Tutorial: Regression modeling with NY taxi data](/azure/machine-learning/service/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context)
57+
* [Tutorial: Regression modeling with NY taxi data](/azure/machine-learning/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context)
5858
* [Python SDK for Open Datasets](/python/api/azureml-opendatasets/?view=azure-ml-py)

articles/open-datasets/samples.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,6 @@ The example Jupyter notebooks for Azure Open Datasets show you how to load open
3535

3636
## Next steps
3737

38-
* [Tutorial: Regression modeling with automated machine learning and an open dataset](/azure/machine-learning/service/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context)
38+
* [Tutorial: Regression modeling with automated machine learning and an open dataset](/azure/machine-learning/tutorial-auto-train-models?context=azure/open-datasets/context/open-datasets-context)
3939
* [Python SDK for Open Datasets](/python/api/azureml-opendatasets/azureml.opendatasets?view=azure-ml-py)
4040
* [Azure Open Datasets catalog](https://azure.microsoft.com/services/open-datasets/catalog/)

articles/open-datasets/toc.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,9 +9,9 @@
99
- name: Tutorial
1010
items:
1111
- name: Regression with automated machine learning
12-
href: /azure/machine-learning/service/tutorial-auto-train-models?toc=/azure/open-datasets/toc.json&bc=/azure/open-datasets/breadcrumb/toc.json
12+
href: /azure/machine-learning/tutorial-auto-train-models?toc=/azure/open-datasets/toc.json&bc=/azure/open-datasets/breadcrumb/toc.json
1313
- name: Enrich an image classification model
14-
href: /azure/machine-learning/service/tutorial-train-models-with-aml?toc=/azure/open-datasets/toc.json&bc=/azure/open-datasets/breadcrumb/toc.json
14+
href: /azure/machine-learning/tutorial-train-models-with-aml?toc=/azure/open-datasets/toc.json&bc=/azure/open-datasets/breadcrumb/toc.json
1515
- name: How-to guides
1616
items:
1717
- name: Datasets in Azure Machine Learning

0 commit comments

Comments
 (0)