Skip to content

Commit 7e4034e

Browse files
authored
Merge pull request #106055 from lobrien/1669159-pytorch
PyTorch clarifications in TensorBoard & ONNX articles
2 parents a9a07df + 68a2900 commit 7e4034e

File tree

2 files changed

+9
-2
lines changed

2 files changed

+9
-2
lines changed

articles/machine-learning/how-to-deploy-and-where.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: conceptual
99
ms.author: jordane
1010
author: jpe316
1111
ms.reviewer: larryfr
12-
ms.date: 12/27/2019
12+
ms.date: 02/27/2020
1313

1414
ms.custom: seoapril2019
1515
---
@@ -893,6 +893,9 @@ service_name = 'onnx-mnist-service'
893893
service = Model.deploy(ws, service_name, [model])
894894
```
895895

896+
If you're using Pytorch, [
897+
Exporting models from PyTorch to ONNX](https://github.com/onnx/tutorials/blob/master/tutorials/PytorchOnnxExport.ipynb) has the details on conversion and limitations.
898+
896899
### Scikit-learn models
897900

898901
No code model deployment is supported for all built-in scikit-learn model types.

articles/machine-learning/how-to-monitor-tensorboard.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.subservice: core
88
ms.topic: conceptual
99
author: maxluk
1010
ms.author: maxluk
11-
ms.date: 11/08/2019
11+
ms.date: 02/27/2020
1212
---
1313

1414
# Visualize experiment runs and metrics with TensorBoard and Azure Machine Learning
@@ -178,6 +178,10 @@ tb.start()
178178
tb.stop()
179179
```
180180

181+
>[!Note]
182+
While this example used TensorFlow, TensorBoard can be used as easily with PyTorch or Chainer models. TensorFlow must be available on the machine running TensorBoard, but is not necessary on the machine doing PyTorch or Chainer computations.
183+
184+
181185
<a name="export"></a>
182186

183187
## Option 2: Export history as log to view in TensorBoard

0 commit comments

Comments
 (0)