Skip to content

Commit 7f439db

Browse files
committed
Merge branch 'main' of https://github.com/MicrosoftDocs/azure-docs-pr into vnet-encryption-ga
2 parents a224488 + 7cf5ffd commit 7f439db

File tree

547 files changed

+5897
-6751
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

547 files changed

+5897
-6751
lines changed

.openpublishing.redirection.azure-monitor.json

Lines changed: 316 additions & 316 deletions
Large diffs are not rendered by default.

.openpublishing.redirection.json

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9385,6 +9385,11 @@
93859385
"redirect_url": "/visualstudio/containers/overview-local-process-kubernetes",
93869386
"redirect_document_id": false
93879387
},
9388+
{
9389+
"source_path_from_root": "/articles/docker/index.yml",
9390+
"redirect_url": "/dotnet/architecture/microservices/container-docker-introduction/docker-defined",
9391+
"redirect_document_id": false
9392+
},
93889393
{
93899394
"source_path_from_root": "/articles/vs-azure-tools-docker-edit-and-refresh.md",
93909395
"redirect_url": "/visualstudio/docker/vs-azure-tools-docker-edit-and-refresh",

.openpublishing.redirection.sentinel.json

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1055,6 +1055,21 @@
10551055
"redirect_url": "/azure/sentinel/normalization-schema-process-event",
10561056
"redirect_document_id": true
10571057
},
1058+
{
1059+
"source_path_from_root": "/articles/sentinel/connect-cef-ama.md",
1060+
"redirect_url": "/azure/sentinel/connect-cef-syslog-ama",
1061+
"redirect_document_id": false
1062+
},
1063+
{
1064+
"source_path_from_root": "/articles/sentinel/connect-cef-syslog.md",
1065+
"redirect_url": "/azure/sentinel/connect-cef-syslog-ama",
1066+
"redirect_document_id": false
1067+
},
1068+
{
1069+
"source_path_from_root": "/articles/sentinel/connect-cef-syslog-options.md",
1070+
"redirect_url": "/azure/sentinel/connect-cef-syslog-ama",
1071+
"redirect_document_id": false
1072+
},
10581073
{
10591074
"source_path_from_root": "/articles/sentinel/notebooks-with-synapse.md",
10601075
"redirect_url": "/azure/sentinel/notebooks-hunt",

articles/active-directory-b2c/partner-akamai-secure-hybrid-access.md

Lines changed: 40 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -218,45 +218,46 @@ Akamai Enterprise Application Access supports SAML federation with cloud IdPs li
218218
```xml
219219
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
220220
<TrustFrameworkPolicy
221-
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
222-
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
223-
xmlns="http://schemas.microsoft.com/online/cpim/schemas/2013/06"
224-
PolicySchemaVersion="0.3.0.0"
225-
TenantId="fabrikam.onmicrosoft.com"
226-
PolicyId="B2C_1A_signup_signin_saml"
227-
PublicPolicyUri="http://fabrikam.onmicrosoft.com/B2C_1A_signup_signin_saml">
228-
<BasePolicy>
229-
<TenantId>fabrikam.onmicrosoft.com</TenantId>
230-
<PolicyId>B2C_1A_TrustFrameworkExtensions</PolicyId>
231-
</BasePolicy>
232-
233-
<UserJourneys>
234-
<UserJourney Id="SignUpOrSignIn">
235-
<OrchestrationSteps>
236-
<OrchestrationStep Order="7" Type="SendClaims" CpimIssuerTechnicalProfileReferenceId="AkamaiSaml2AssertionIssuer"/>
237-
</OrchestrationSteps>
238-
</UserJourney>
239-
</UserJourneys>
240-
<RelyingParty>
241-
<DefaultUserJourney ReferenceId="SignUpOrSignIn" />
242-
<TechnicalProfile Id="PolicyProfile">
243-
<DisplayName>PolicyProfile</DisplayName>
244-
<Protocol Name="SAML2"/>
245-
<OutputClaims>
246-
<OutputClaim ClaimTypeReferenceId="displayName" />
247-
<OutputClaim ClaimTypeReferenceId="givenName" />
248-
<OutputClaim ClaimTypeReferenceId="surname" />
249-
<OutputClaim ClaimTypeReferenceId="email" DefaultValue="" />
250-
<OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="" />
251-
<OutputClaim ClaimTypeReferenceId="objectId" PartnerClaimType="objectId"/>
252-
</OutputClaims>
253-
<SubjectNamingInfo ClaimType="objectId" ExcludeAsClaim="true"/>
254-
</TechnicalProfile>
255-
</RelyingParty>
256-
</TrustFrameworkPolicy>
257-
```
258-
>[!NOTE]
259-
>You can follow this same process to implement other types of flows, for example, sign-in, password reset, or profile editing flows.
221+
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
222+
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
223+
xmlns="http://schemas.microsoft.com/online/cpim/schemas/2013/06"
224+
PolicySchemaVersion="0.3.0.0"
225+
TenantId="fabrikam.onmicrosoft.com"
226+
PolicyId="B2C_1A_signup_signin_saml"
227+
PublicPolicyUri="http://fabrikam.onmicrosoft.com/B2C_1A_signup_signin_saml">
228+
<BasePolicy>
229+
<TenantId>fabrikam.onmicrosoft.com</TenantId>
230+
<PolicyId>B2C_1A_TrustFrameworkExtensions</PolicyId>
231+
</BasePolicy>
232+
233+
<UserJourneys>
234+
<UserJourney Id="SignUpOrSignIn">
235+
<OrchestrationSteps>
236+
<OrchestrationStep Order="7" Type="SendClaims" CpimIssuerTechnicalProfileReferenceId="AkamaiSaml2AssertionIssuer"/>
237+
</OrchestrationSteps>
238+
</UserJourney>
239+
</UserJourneys>
240+
<RelyingParty>
241+
<DefaultUserJourney ReferenceId="SignUpOrSignIn" />
242+
<TechnicalProfile Id="PolicyProfile">
243+
<DisplayName>PolicyProfile</DisplayName>
244+
<Protocol Name="SAML2"/>
245+
<OutputClaims>
246+
<OutputClaim ClaimTypeReferenceId="displayName" />
247+
<OutputClaim ClaimTypeReferenceId="givenName" />
248+
<OutputClaim ClaimTypeReferenceId="surname" />
249+
<OutputClaim ClaimTypeReferenceId="email" DefaultValue="" />
250+
<OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="" />
251+
<OutputClaim ClaimTypeReferenceId="objectId" PartnerClaimType="objectId"/>
252+
</OutputClaims>
253+
<SubjectNamingInfo ClaimType="objectId" ExcludeAsClaim="true"/>
254+
</TechnicalProfile>
255+
</RelyingParty>
256+
</TrustFrameworkPolicy>
257+
```
258+
259+
>[!NOTE]
260+
>You can follow this same process to implement other types of flows, for example, sign-in, password reset, or profile editing flows.
260261
261262
### Step 4 - Upload your policy
262263

articles/ai-services/cognitive-services-virtual-networks.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -401,11 +401,11 @@ You can manage IP network rules for Azure AI services resources through the Azur
401401
402402
```azurepowershell-interactive
403403
$parameters = @{
404-
"ResourceGroupName" = "myresourcegroup"
405-
"Name" = "myaccount"
406-
}
407-
(Get-AzCognitiveServicesAccountNetworkRuleSet @parameters).IPRules
408-
```
404+
"ResourceGroupName" = "myresourcegroup"
405+
"Name" = "myaccount"
406+
}
407+
(Get-AzCognitiveServicesAccountNetworkRuleSet @parameters).IPRules
408+
```
409409

410410
1. Add a network rule for an individual IP address.
411411

articles/ai-services/computer-vision/Tutorials/liveness.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Face Liveness detection can be used to determine if a face in an input video str
1616

1717
The goal of liveness detection is to ensure that the system is interacting with a physically present live person at the time of authentication. Such systems have become increasingly important with the rise of digital finance, remote access control, and online identity verification processes.
1818

19-
The liveness detection solution successfully defends against a variety of spoof types ranging from paper printouts, 2d/3d masks, and spoof presentations on phones and laptops. Liveness detection is an active area of research, with continuous improvements being made to counteract increasingly sophisticated spoofing attacks over time. Continuous improvements will be rolled out to the client and the service components over time as the overall solution gets more robust to new types of attacks.
19+
The liveness detection solution successfully defends against various spoof types ranging from paper printouts, 2d/3d masks, and spoof presentations on phones and laptops. Liveness detection is an active area of research, with continuous improvements being made to counteract increasingly sophisticated spoofing attacks over time. Continuous improvements will be rolled out to the client and the service components over time as the overall solution gets more robust to new types of attacks.
2020

2121
[!INCLUDE [liveness-sdk-gate](../includes/liveness-sdk-gate.md)]
2222

@@ -40,7 +40,7 @@ Once you have access to the SDK, follow instruction in the [azure-ai-vision-sdk]
4040
- For Swift iOS, follow the instructions in the [iOS sample](https://aka.ms/azure-ai-vision-face-liveness-client-sdk-ios-readme)
4141
- For Kotlin/Java Android, follow the instructions in the [Android sample](https://aka.ms/liveness-sample-java)
4242

43-
Once you've added the code into your application, the SDK will handle starting the camera, guiding the end-user to adjust their position, composing the liveness payload, and calling the Azure AI Face cloud service to process the liveness payload.
43+
Once you've added the code into your application, the SDK handles starting the camera, guiding the end-user to adjust their position, composing the liveness payload, and calling the Azure AI Face cloud service to process the liveness payload.
4444

4545
### Orchestrate the liveness solution
4646

@@ -86,7 +86,7 @@ The high-level steps involved in liveness orchestration are illustrated below:
8686

8787
1. The SDK then starts the camera, guides the user to position correctly and then prepares the payload to call the liveness detection service endpoint.
8888

89-
1. The SDK calls the Azure AI Vision Face service to perform the liveness detection. Once the service responds, the SDK will notify the mobile application that the liveness check has been completed.
89+
1. The SDK calls the Azure AI Vision Face service to perform the liveness detection. Once the service responds, the SDK notifies the mobile application that the liveness check has been completed.
9090

9191
1. The mobile application relays the liveness check completion to the app server.
9292

@@ -110,7 +110,7 @@ The high-level steps involved in liveness orchestration are illustrated below:
110110
"method": "POST",
111111
"contentLength": 352568,
112112
"contentType": "multipart/form-data; boundary=--------------------------482763481579020783621915",
113-
"userAgent": "PostmanRuntime/7.34.0"
113+
"userAgent": ""
114114
},
115115
"response": {
116116
"body": {
@@ -162,12 +162,12 @@ Use the following tips to ensure that your input images give the most accurate r
162162
#### Composition requirements:
163163
- Photo is clear and sharp, not blurry, pixelated, distorted, or damaged.
164164
- Photo is not altered to remove face blemishes or face appearance.
165-
- Photo must be in an RGB color supported format (JPEG, PNG, WEBP, BMP). Recommended Face size is 200 pixels x 200 pixels. Face sizes larger than 200 pixels x 200 pixels will not result in better AI quality, and no larger than 6MB in size.
165+
- Photo must be in an RGB color supported format (JPEG, PNG, WEBP, BMP). Recommended Face size is 200 pixels x 200 pixels. Face sizes larger than 200 pixels x 200 pixels will not result in better AI quality, and no larger than 6 MB in size.
166166
- User is not wearing glasses, masks, hats, headphones, head coverings, or face coverings. Face should be free of any obstructions.
167167
- Facial jewelry is allowed provided they do not hide your face.
168168
- Only one face should be visible in the photo.
169169
- Face should be in neutral front-facing pose with both eyes open, mouth closed, with no extreme facial expressions or head tilt.
170-
- Face should be free of any shadows or red eyes. Please retake photo if either of these occur.
170+
- Face should be free of any shadows or red eyes. Retake photo if either of these occur.
171171
- Background should be uniform and plain, free of any shadows.
172172
- Face should be centered within the image and fill at least 50% of the image.
173173

@@ -243,7 +243,7 @@ The high-level steps involved in liveness with verification orchestration are il
243243
"method": "POST",
244244
"contentLength": 352568,
245245
"contentType": "multipart/form-data; boundary=--------------------------590588908656854647226496",
246-
"userAgent": "PostmanRuntime/7.34.0"
246+
"userAgent": ""
247247
},
248248
"response": {
249249
"body": {

articles/ai-services/computer-vision/how-to/shelf-analyze.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ The fastest way to start using Product Recognition is to use the built-in pretra
2525
* Once you have your Azure subscription, <a href="https://portal.azure.com/#create/Microsoft.CognitiveServicesComputerVision" title="create a Vision resource" target="_blank">create a Vision resource</a> in the Azure portal. It must be deployed in the **East US** or **West US 2** region. After it deploys, select **Go to resource**.
2626
* You'll need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service. You'll paste your key and endpoint into the code below later in the guide.
2727
* An Azure Storage resource with a blob storage container. [Create one](/azure/storage/common/storage-account-create?tabs=azure-portal)
28-
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Postman, Swagger, or the REST Client extension for VS Code.
28+
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Swagger or the [REST Client](https://marketplace.visualstudio.com/items?itemName=humao.rest-client) extension for VS Code.
2929
* A shelf image. You can download our [sample image](https://github.com/Azure-Samples/cognitive-services-sample-data-files/blob/master/ComputerVision/shelf-analysis/shelf.png) or bring your own images. The maximum file size per image is 20 MB.
3030

3131
## Analyze shelf images

articles/ai-services/computer-vision/how-to/shelf-modify-images.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ This guide also shows you how to use the **Rectification API** to correct for pe
2424
* Once you have your Azure subscription, <a href="https://portal.azure.com/#create/Microsoft.CognitiveServicesComputerVision" title="create a Vision resource" target="_blank">create a Vision resource</a> in the Azure portal. It must be deployed in the **East US** or **West US 2** region. After it deploys, select **Go to resource**.
2525
* You'll need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service. You'll paste your key and endpoint into the code below later in the quickstart.
2626
* An Azure Storage resource with a blob storage container. [Create one](/azure/storage/common/storage-account-create?tabs=azure-portal)
27-
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Postman, Swagger, or the REST Client extension for VS Code.
27+
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Swagger or the [REST Client](https://marketplace.visualstudio.com/items?itemName=humao.rest-client) extension for VS Code.
2828
* A set of photos that show adjacent parts of the same shelf. A 50% overlap between images is recommended. You can download and use the sample "unstitched" images from [GitHub](https://github.com/Azure-Samples/cognitive-services-sample-data-files/tree/master/ComputerVision/shelf-analysis).
2929

3030

articles/ai-services/computer-vision/how-to/shelf-planogram.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ A planogram is a diagram that indicates the correct placement of retail products
2222
2323
## Prerequisites
2424
* You must have already set up and run basic [Product Understanding analysis](./shelf-analyze.md) with the Product Understanding API.
25-
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Postman, Swagger, or the REST Client extension for VS Code.
25+
* [cURL](https://curl.haxx.se/) installed. Or, you can use a different REST platform, like Swagger or the [REST Client](https://marketplace.visualstudio.com/items?itemName=humao.rest-client) extension for VS Code.
2626

2727
## Prepare a planogram schema
2828

articles/ai-services/containers/azure-kubernetes-recipe.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -191,7 +191,7 @@ The following steps are needed to get the required information to connect your c
191191
1. Get your container registry ID.
192192
193193
```azurecli-interactive
194-
az acr show --resource-group cogserv-container-rg --name pattyregistry --query "id" --o table
194+
az acr show --resource-group cogserv-container-rg --name pattyregistry --query "id" --output table
195195
```
196196
197197
Save the output for the scope parameter value, `<acrId>`, in the next step. It looks like:

0 commit comments

Comments
 (0)