Skip to content

Commit 82ace43

Browse files
fix nb links
1 parent 40a4117 commit 82ace43

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

articles/machine-learning/how-to-auto-train-forecast.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -313,7 +313,7 @@ returned_job.services["Studio"].endpoint
313313

314314
## Forecasting with a trained model
315315

316-
Once you've used to AutoML to train and select a best model, the next step is to evaluate the model. If it meets your requirements, you can use it to generate forecasts into the future. This section shows how to write Python scripts for evaluation and prediction (inference). For an example of deploying a trained model with an inference script, see our [example notebook](~/azureml-examples-main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-github-dau/auto-ml-forecasting-github-dau.ipynb).
316+
Once you've used to AutoML to train and select a best model, the next step is to evaluate the model. If it meets your requirements, you can use it to generate forecasts into the future. This section shows how to write Python scripts for evaluation and prediction (inference). For an example of deploying a trained model with an inference script, see our [example notebook](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-github-dau/auto-ml-forecasting-github-dau.ipynb).
317317

318318
### Evaluating model accuracy with a rolling forecast
319319

@@ -375,11 +375,11 @@ def run(mini_batch):
375375
return pd.concat(resultList, sort=False, ignore_index=True)
376376
```
377377

378-
In this sample, the step size for the rolling forecast is set to one which means that the forecaster is advanced one period, or one day in our demand prediction example, at each iteration. The total number of forecasts returned by `rolling_forecast` depends on the length of the test set and this step size. For more details and examples, see the [rolling_forecast() documentation](/python/api/azureml-training-tabular/azureml.training.tabular.models.forecasting_pipeline_wrapper_base.forecastingpipelinewrapperbase#azureml-training-tabular-models-forecasting-pipeline-wrapper-base-forecastingpipelinewrapperbase-rolling-forecast) and the [Forecasting away from training data notebook](~/azureml-examples-main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
378+
In this sample, the step size for the rolling forecast is set to one which means that the forecaster is advanced one period, or one day in our demand prediction example, at each iteration. The total number of forecasts returned by `rolling_forecast` depends on the length of the test set and this step size. For more details and examples, see the [rolling_forecast() documentation](/python/api/azureml-training-tabular/azureml.training.tabular.models.forecasting_pipeline_wrapper_base.forecastingpipelinewrapperbase#azureml-training-tabular-models-forecasting-pipeline-wrapper-base-forecastingpipelinewrapperbase-rolling-forecast) and the [Forecasting away from training data notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
379379

380380
### Prediction into the future
381381

382-
The [forecast_quantiles()](/python/api/azureml-train-automl-client/azureml.train.automl.model_proxy.modelproxy#forecast-quantiles-x-values--typing-any--y-values--typing-union-typing-any--nonetype----none--forecast-destination--typing-union-typing-any--nonetype----none--ignore-data-errors--bool---false-----azureml-data-abstract-dataset-abstractdataset) function allows specifications of when predictions should start, unlike the `predict()` method, which is typically used for classification and regression tasks. The forecast_quantiles() method, by default, generates a point forecast that doesn't have a cone of uncertainty around it. Learn more in the [Forecasting away from training data notebook](~/azureml-examples-main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
382+
The [forecast_quantiles()](/python/api/azureml-train-automl-client/azureml.train.automl.model_proxy.modelproxy#forecast-quantiles-x-values--typing-any--y-values--typing-union-typing-any--nonetype----none--forecast-destination--typing-union-typing-any--nonetype----none--ignore-data-errors--bool---false-----azureml-data-abstract-dataset-abstractdataset) function allows specifications of when predictions should start, unlike the `predict()` method, which is typically used for classification and regression tasks. The forecast_quantiles() method, by default, generates a point forecast that doesn't have a cone of uncertainty around it. Learn more in the [Forecasting away from training data notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
383383

384384
In the following example, you first replace all values in `y_pred` with `NaN`. The forecast origin is at the end of training data in this case. However, if you replaced only the second half of `y_pred` with `NaN`, the function would leave the numerical values in the first half unmodified, but forecast the `NaN` values in the second half. The function returns both the forecasted values and the aligned features.
385385

@@ -440,7 +440,7 @@ The following diagram shows the workflow for the many models solution.
440440

441441
![Many models concept diagram](./media/how-to-auto-train-forecast/many-models.svg)
442442

443-
The following code demonstrates the key parameters users need to set up their many models run. See the [Many Models- Automated ML notebook](~/azureml-examples-main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb) for a many models forecasting example
443+
The following code demonstrates the key parameters users need to set up their many models run. See the [Many Models- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb) for a many models forecasting example
444444

445445
```python
446446
from azureml.train.automl.runtime._many_models.many_models_parameters import ManyModelsTrainParameters
@@ -477,7 +477,7 @@ To further visualize this, the leaf levels of the hierarchy contain all the time
477477

478478
The hierarchical time series solution is built on top of the Many Models Solution and share a similar configuration setup.
479479

480-
The following code demonstrates the key parameters to set up your hierarchical time series forecasting runs. See the [Hierarchical time series- Automated ML notebook](~/azureml-examples-main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb), for an end to end example.
480+
The following code demonstrates the key parameters to set up your hierarchical time series forecasting runs. See the [Hierarchical time series- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb), for an end to end example.
481481

482482
```python
483483

@@ -519,11 +519,11 @@ hts_parameters = HTSTrainParameters(
519519

520520
## Example notebooks
521521

522-
See the [forecasting sample notebooks](~/azureml-examples-main/sdk/python/jobs/automl-standalone-jobs) for detailed code examples of advanced forecasting configuration including:
522+
See the [forecasting sample notebooks](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs) for detailed code examples of advanced forecasting configuration including:
523523

524-
* [deep learning models](~/azureml-examples-main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-github-dau/auto-ml-forecasting-github-dau.ipynb)
525-
* [holiday detection and featurization](~/azureml-examples-main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-task-bike-share/auto-ml-forecasting-bike-share.ipynb)
526-
* [manual configuration for lags and rolling window aggregation features](~/azureml-examples-main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-task-energy-demand/automl-forecasting-task-energy-demand-advanced.ipynb)
524+
* [deep learning models](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-github-dau/auto-ml-forecasting-github-dau.ipynb)
525+
* [holiday detection and featurization](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-task-bike-share/auto-ml-forecasting-bike-share.ipynb)
526+
* [manual configuration for lags and rolling window aggregation features](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/automl-standalone-jobs/automl-forecasting-task-energy-demand/automl-forecasting-task-energy-demand-advanced.ipynb)
527527

528528

529529

0 commit comments

Comments
 (0)