Skip to content

Commit 8362baf

Browse files
resolved changes in tutorial
1 parent f74077c commit 8362baf

File tree

3 files changed

+25
-25
lines changed

3 files changed

+25
-25
lines changed

articles/azure-sql-edge/deploy-azure-resources.md

Lines changed: 10 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -14,16 +14,15 @@ In this tutorial, you will be predicting iron ore impurities as a % of Silica in
1414

1515
## Pre-requisite software to be installed
1616
1. If you don't have an Azure subscription, create a [free account](https://azure.microsoft.com/free/).
17-
2. Install [Visual Studio Professions/Enterprise](https://visualstudio.microsoft.com/vs/)
18-
3. Install [PowerShell 3.6.8](https://www.python.org/downloads/release/python-368/)
17+
2. Install [PowerShell 3.6.8](https://www.python.org/downloads/release/python-368/)
1918
* Windows x86-x64 Executable Installer
2019
* Ensure to add python path to the PATH environment variables
21-
4. Install ["Microsoft Visual C++ 14.0" and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/) - Download can be located under "Tools For Visual Studio 2019"
22-
5. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
23-
6. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
24-
7. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
25-
8. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
26-
9. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
20+
3. Install ["Microsoft Visual C++ 14.0" and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/) - Download can be located under "Tools For Visual Studio 2019"
21+
4. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
22+
5. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
23+
6. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
24+
7. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
25+
8. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
2726

2827
## Deploying Azure resources using PowerShell Script
2928

@@ -235,3 +234,6 @@ az vm run-command invoke -g $ResourceGroup -n $EdgeDeviceId --command-id RunShe
235234
```powershell
236235
az ml workspace create -w $MyWorkSpace -g $ResourceGroup
237236
```
237+
## Next Steps
238+
239+
* [Set up IoT Edge Modules](set-up-iot-edge-modules.md)

articles/azure-sql-edge/run-ml-model-on-sql-edge.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ In this tutorial we will,
3535
4. In the file section, open a new notebook or use the keyboard shortcut Alt + Windows + N. Set the kernel to Python 3 before executing the below section.
3636

3737
## Predict Iron Ore Impurities (% of Silica) with ONNX in Azure SQL Edge
38-
The following python code can be collated in jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
38+
The following python code can be collated in Jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
3939
```python
4040
!pip install azureml.core -q
4141
!pip install azureml.train.automl -q
@@ -131,7 +131,7 @@ We proceed with loading the model in Azure SQL Edge database for local scoring
131131
```python
132132
## Load the Model into a SQL Database.
133133
## Define the Connection string parameters. These connection strings will be used later also in the demo.
134-
server = '40.69.153.211,1600' # SQL Server IP address
134+
server = '<SQL Server IP address>'
135135
username = 'sa' # SQL Server username
136136
password = '<SQL Server password>'
137137
database = 'IronOreSilicaPrediction'
@@ -151,7 +151,7 @@ conn.close()
151151
Finally, we use the Azure SQL Edge model to perform prediction using the trained model
152152
```python
153153
## Define the Connection string parameters. These connection strings will be used later also in the demo.
154-
server = '40.69.153.211,1600' # SQL Server IP address
154+
server = '<SQL Server IP address>'
155155
username = 'sa' # SQL Server username
156156
password = '<SQL Server password>'
157157
database = 'IronOreSilicaPrediction'

articles/azure-sql-edge/set-up-iot-edge-modules.md

Lines changed: 12 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
title: Set up IoT Edge Modules
3-
description: In this section, we will set up IoT edge modules and connections
3+
description: In this section, we will set up IoT Edge modules and connections
44
keywords:
55
services: sql-database-edge
66
ms.service: sql-database-edge
@@ -14,9 +14,9 @@ ms.date: 05/19/2020
1414

1515
In this tutorial, we will be setting up the below IoT Edge modules
1616
1. Azure SQL Edge
17-
2. A data generator module
17+
2. Data generator IoT Edge module
1818

19-
Before proceeding, create an Azure Stream Analytics Module that will be used in the tutorial for predicting Iron Ore impurities. You can learn more about using streaming jobs with SQL Edge [here](https://docs.microsoft.com/en-us/azure/sql-database-edge/stream-analytics#using-streaming-jobs-with-sql-database-edge)
19+
Before proceeding, create an Azure Stream Analytics Module that will be used in the tutorial for predicting Iron Ore impurities. You can learn more about using streaming jobs with SQL Edge [here](https://docs.microsoft.com/azure/sql-database-edge/stream-analytics#using-streaming-jobs-with-sql-database-edge)
2020

2121
The Azure Stream Analytics job is created with hosting environment set as Edge. Now, proceed with setting up the Inputs and Outputs specifically for the tutorial.
2222

@@ -28,14 +28,15 @@ Event Serialization format|JSON
2828
Encoding|UTF-8
2929
Event compression type|None
3030

31-
2. For creating the **output**, click '+Add' and choose SQL Database. Fill the details section as indicated below,
32-
31+
2. For creating the **output**, click '+Add' and choose SQL Database. For the purpose of this tutorial, fill the details section as indicated below,
32+
> [!NOTE]
33+
> The password specified in this sections need to be specified for SQL SA password when deploying the SQL Edge module in section **"Deploying the Azure SQL Edge module"**
3334
Field|Value
3435
-----|-----
3536
Database|IronOreSilicaPrediction
3637
Server name|tcp:.,1433
3738
Username|sa
38-
Password|YourStrongPasswrod
39+
Password|Specify a strong password
3940
Table|IronOreMeasurements1
4041

4142
3. Navigate to the **Query** Section and ensure that the query is set up as below
@@ -81,7 +82,7 @@ ASEdemocontregistry.azurecr.io/silicaprediction:amd64
8182

8283
## Deploying the Azure SQL Edge module
8384

84-
1. First, deploy the Azure SQL Edge module by following the steps listed [here](https://docs.microsoft.com/en-us/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge)
85+
1. First, deploy the Azure SQL Edge module by following the steps listed [here](https://docs.microsoft.com/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge)
8586

8687
2. On the **Specify Route** of the **Set Modules** page, specify the routes for module to IoT Edge Hub communication as below
8788
```
@@ -103,10 +104,7 @@ FROM /messages/modules/ASEDataGenerator/outputs/IronOreMeasures INTO BrokeredEnd
103104
}
104105
}
105106
```
106-
Example
107-
```json
108-
{
109-
"SqlPackage": "https://ASEstorage.blob.core.windows.net/sqldatabasedacpac/SQLDatabasedacpac.zip?sp=r&st=2020-04- 01T20:01:49Z&se=2021-01-01T05:01:49Z&spr=https&sv=2019-02-02&sr=b&sig=AH71glRTfULcyzJZKlgezfa0Epjfe7zv10mF%2BNzEIn0%3D",
110-
"ASAJobInfo": "https://ASEstorage.blob.core.windows.net/bootdiagnostics-ironorepr-6984a2b8-6901-41a8-b3a6-49f86276e63d/ASAEdgeJobs/1278e9b9-94af-41ec-90b3-8172560340c1/e9bb25a6-d0a1-422b-9e29-4305a89e92f2/ASAEdgeJobDefinition.zip?sv=2018-03-28&sr=b&sig=KQZqR7diisByoUkCK6pEA3VJm%2FI2wHWEPDL1OwjMTJ8%3D&st=2020-04-01T20%3A21%3A20Z&se=2023-04-01T20%3A31%3A20Z&sp=r"
111-
}
112-
```
107+
108+
## Next Steps
109+
110+
* [Deploying ML model on Azure SQL Edge using ONNX ](run-ml-model-on-sql-edge.md)

0 commit comments

Comments
 (0)