You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Ensure to add python path to the PATH environment variables
21
-
4. Install ["Microsoft Visual C++ 14.0" and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/) - Download can be located under "Tools For Visual Studio 2019"
22
-
5. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
23
-
6. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
24
-
7. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
25
-
8. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
26
-
9. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
20
+
3. Install ["Microsoft Visual C++ 14.0" and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/) - Download can be located under "Tools For Visual Studio 2019"
21
+
4. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
22
+
5. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
23
+
6. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
24
+
7. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
25
+
8. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
27
26
28
27
## Deploying Azure resources using PowerShell Script
29
28
@@ -235,3 +234,6 @@ az vm run-command invoke -g $ResourceGroup -n $EdgeDeviceId --command-id RunShe
235
234
```powershell
236
235
az ml workspace create -w $MyWorkSpace -g $ResourceGroup
237
236
```
237
+
## Next Steps
238
+
239
+
*[Set up IoT Edge Modules](set-up-iot-edge-modules.md)
Copy file name to clipboardExpand all lines: articles/azure-sql-edge/run-ml-model-on-sql-edge.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -35,7 +35,7 @@ In this tutorial we will,
35
35
4. In the file section, open a new notebook or use the keyboard shortcut Alt + Windows + N. Set the kernel to Python 3 before executing the below section.
36
36
37
37
## Predict Iron Ore Impurities (% of Silica) with ONNX in Azure SQL Edge
38
-
The following python code can be collated in jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
38
+
The following python code can be collated in Jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
39
39
```python
40
40
!pip install azureml.core -q
41
41
!pip install azureml.train.automl -q
@@ -131,7 +131,7 @@ We proceed with loading the model in Azure SQL Edge database for local scoring
131
131
```python
132
132
## Load the Model into a SQL Database.
133
133
## Define the Connection string parameters. These connection strings will be used later also in the demo.
134
-
server ='40.69.153.211,1600'#SQL Server IP address
134
+
server ='<SQL Server IP address>'
135
135
username ='sa'# SQL Server username
136
136
password ='<SQL Server password>'
137
137
database ='IronOreSilicaPrediction'
@@ -151,7 +151,7 @@ conn.close()
151
151
Finally, we use the Azure SQL Edge model to perform prediction using the trained model
152
152
```python
153
153
## Define the Connection string parameters. These connection strings will be used later also in the demo.
154
-
server ='40.69.153.211,1600'#SQL Server IP address
Copy file name to clipboardExpand all lines: articles/azure-sql-edge/set-up-iot-edge-modules.md
+12-14Lines changed: 12 additions & 14 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1
---
2
2
title: Set up IoT Edge Modules
3
-
description: In this section, we will set up IoT edge modules and connections
3
+
description: In this section, we will set up IoT Edge modules and connections
4
4
keywords:
5
5
services: sql-database-edge
6
6
ms.service: sql-database-edge
@@ -14,9 +14,9 @@ ms.date: 05/19/2020
14
14
15
15
In this tutorial, we will be setting up the below IoT Edge modules
16
16
1. Azure SQL Edge
17
-
2.A data generator module
17
+
2.Data generator IoT Edge module
18
18
19
-
Before proceeding, create an Azure Stream Analytics Module that will be used in the tutorial for predicting Iron Ore impurities. You can learn more about using streaming jobs with SQL Edge [here](https://docs.microsoft.com/en-us/azure/sql-database-edge/stream-analytics#using-streaming-jobs-with-sql-database-edge)
19
+
Before proceeding, create an Azure Stream Analytics Module that will be used in the tutorial for predicting Iron Ore impurities. You can learn more about using streaming jobs with SQL Edge [here](https://docs.microsoft.com/azure/sql-database-edge/stream-analytics#using-streaming-jobs-with-sql-database-edge)
20
20
21
21
The Azure Stream Analytics job is created with hosting environment set as Edge. Now, proceed with setting up the Inputs and Outputs specifically for the tutorial.
2. For creating the **output**, click '+Add' and choose SQL Database. Fill the details section as indicated below,
32
-
31
+
2. For creating the **output**, click '+Add' and choose SQL Database. For the purpose of this tutorial, fill the details section as indicated below,
32
+
> [!NOTE]
33
+
> The password specified in this sections need to be specified for SQL SA password when deploying the SQL Edge module in section **"Deploying the Azure SQL Edge module"**
33
34
Field|Value
34
35
-----|-----
35
36
Database|IronOreSilicaPrediction
36
37
Server name|tcp:.,1433
37
38
Username|sa
38
-
Password|YourStrongPasswrod
39
+
Password|Specify a strong password
39
40
Table|IronOreMeasurements1
40
41
41
42
3. Navigate to the **Query** Section and ensure that the query is set up as below
1. First, deploy the Azure SQL Edge module by following the steps listed [here](https://docs.microsoft.com/en-us/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge)
85
+
1. First, deploy the Azure SQL Edge module by following the steps listed [here](https://docs.microsoft.com/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge)
85
86
86
87
2. On the **Specify Route** of the **Set Modules** page, specify the routes for module to IoT Edge Hub communication as below
87
88
```
@@ -103,10 +104,7 @@ FROM /messages/modules/ASEDataGenerator/outputs/IronOreMeasures INTO BrokeredEnd
0 commit comments