Skip to content

Commit 85a74c1

Browse files
committed
Fixed variable names
1 parent 051d41e commit 85a74c1

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

articles/machine-learning/how-to-use-automlstep-in-pipelines.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -415,8 +415,8 @@ Once the `run` completes, you can retrieve `PipelineData` objects that have been
415415
metrics_output_port = run.get_pipeline_output('metrics_output')
416416
model_output_port = run.get_pipeline_output('model_output')
417417

418-
metrics_output.download('.', show_progress=True)
419-
model_output.download('.', show_progress=True)
418+
metrics_output_port.download('.', show_progress=True)
419+
model_output_port.download('.', show_progress=True)
420420
```
421421

422422
Downloaded files are written to the sub-directory `azureml/{run.id}/`. The metrics file is JSON-formatted and can be converted into a Pandas dataframe for examination.
@@ -438,6 +438,7 @@ with open(metrics_filename) as f:
438438

439439
deserialized_metrics_output = json.loads(metrics_output_result)
440440
df = pd.DataFrame(deserialized_metrics_output)
441+
df
441442
```
442443

443444
The code snippet above shows the metrics file being loaded from it's location on the Azure datastore. You can also load it from the downloaded file, as shown in the comment. Once you've deserialized it and converted it to a Pandas DataFrame, you can see detailed metrics for each of the iterations of the automated ML step.

0 commit comments

Comments
 (0)