Skip to content

Commit 8691070

Browse files
committed
one change
1 parent 8e5f15d commit 8691070

File tree

1 file changed

+26
-20
lines changed

1 file changed

+26
-20
lines changed

articles/machine-learning/how-to-manage-workspace-cli.md

Lines changed: 26 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.subservice: core
88
ms.author: deeikele
99
author: deeikele
1010
ms.reviewer: larryfr
11-
ms.date: 06/13/2024
11+
ms.date: 06/17/2024
1212
ms.topic: how-to
1313
ms.custom: devx-track-azurecli, cliv2
1414
---
@@ -107,20 +107,20 @@ The output of the workspace creation command is similar to the following JSON. Y
107107

108108
```json
109109
{
110-
"applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.insights/components/<application-insight-name>",
111-
"containerRegistry": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.containerregistry/registries/<acr-name>",
110+
"applicationInsights": "/subscriptions/<subscription-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.insights/components/<application-insight-name>",
111+
"containerRegistry": "/subscriptions/<subscription-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.containerregistry/registries/<container-registry-name>",
112112
"creationTime": "2019-08-30T20:24:19.6984254+00:00",
113113
"description": "",
114114
"friendlyName": "<workspace-name>",
115-
"id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
115+
"id": "/subscriptions/<subscription-GUID>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-id>",
116116
"identityPrincipalId": "<GUID>",
117117
"identityTenantId": "<GUID>",
118118
"identityType": "SystemAssigned",
119-
"keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
119+
"keyVault": "/subscriptions/<subscription-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
120120
"location": "<location>",
121121
"name": "<workspace-name>",
122122
"resourceGroup": "<resource-group-name>",
123-
"storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
123+
"storageAccount": "/subscriptions/<subscription-GUID>/resourcegroups/<resource-group-name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
124124
"type": "Microsoft.MachineLearningServices/workspaces",
125125
"workspaceid": "<GUID>"
126126
}
@@ -137,8 +137,8 @@ You don't have to specify all the associated dependent resources in the configur
137137
If you use an existing storage account for the workspace, it must meet the following criteria. These requirements apply only to the *default* storage account for the workspace.
138138

139139
- Not a premium account (Premium_LRS or Premium_GRS)
140-
- Both Azure Blob and Azure File capabilities enabled
141-
- For Azure Data Lake Storage, hierarchical namespace disabled
140+
- Azure Blob and Azure File capabilities both enabled
141+
- Hierarchical namespace disabled for Azure Data Lake Storage
142142

143143
To use an existing Azure container registry with an Azure Machine Learning workspace, you must [enable the admin account](/azure/container-registry/container-registry-authentication#admin-account) on the container registry.
144144

@@ -151,35 +151,41 @@ You must provide the existing resource IDs in the YAML file. You can get these I
151151
- **Azure Key Vault**:<br>
152152
`az keyvault show --name <key-vault-name> --query "id"`
153153
- **Azure Container Registry**:<br>
154-
`az acr show --name <acr-name> -g <resource-group-name> --query "id"`
154+
`az acr show --name <container-registry-name> -g <resource-group-name> --query "id"`
155155

156156
The query results look similar to the following string:<br>
157-
`"/subscriptions/<service-GUID>/resourceGroups/<resource-group-name>/providers/<provider>/<subresource>/<id>"`.
157+
`"/subscriptions/<subscription-GUID>/resourceGroups/<resource-group-name>/providers/<provider>/<subresource>/<id>"`.
158158

159159
## Secure Azure CLI communications
160160

161-
All Azure Machine Learning V2 `az ml` commands communicate operational data, such as YAML parameters and metadata, to Azure Resource Manager. Some of the Azure CLI commands communicate with Azure Resource Manager over the internet. If your Azure Machine Learning workspace is public and isn't behind a virtual network, communications are secured by using HTTPS/TLS 1.2. No extra configuration is required.
161+
All Azure Machine Learning V2 `az ml` commands communicate operational data, such as YAML parameters and metadata, to Azure Resource Manager. Some of the Azure CLI commands communicate with Azure Resource Manager over the internet.
162+
163+
If your Azure Machine Learning workspace is public and isn't behind a virtual network, communications are secured by using HTTPS/TLS 1.2. No extra configuration is required.
162164

163165
If your Azure Machine Learning workspace uses a private endpoint and virtual network, you must choose one of the following configurations to use Azure CLI:
164166

165167
- To communicate over the public internet, set the `--public-network-access` parameter to `Enabled`.
166168

167-
- To increase security and avoid communicating over the public internet, configure Azure Machine Learning to use private network connectivity with an Azure Private Link endpoint, as described in the following section.
169+
- To avoid communicating over the public internet for security reasons, configure Azure Machine Learning to use private network connectivity with an Azure Private Link endpoint, as described in the following section.
168170

169171
### Private network connectivity
170172

171173
Depending on your use case and organizational requirements, you can configure Azure Machine Learning to use private network connectivity. You can use the Azure CLI to deploy a workspace and a Private Link endpoint for the workspace resource.
172174

173-
When you use Private Link, your workspace can't use Azure Container Registry to build Docker images. In your YAML workspace configuration file, you must set the `image_build_compute` property to a CPU compute cluster name to use for Docker image environment building. You can also specify that the private link workspace isn't accessible over the internet by setting the `public_network_access` property to `Disabled`.
175+
If you use private link endpoints for both Azure Container Registry and Azure Machine Learning, you can't use Container Registry tasks to build Docker environment images. Instead you must build images by using an Azure Machine Learning compute cluster.
176+
177+
In your YAML workspace configuration file, you must set the `image_build_compute` property to a compute cluster name to use for Docker image environment building. You can also specify that the private link workspace isn't accessible over the internet by setting the `public_network_access` property to `Disabled`.
178+
179+
The following code shows an example workspace configuration file for private network connectivity.
174180

175181
:::code language="YAML" source="~/azureml-examples-main/cli/resources/workspace/privatelink.yml":::
176182

177-
After you create the workspace by running `az ml workspace create`, use the [Azure networking CLI commands](/cli/azure/network/private-endpoint#az-network-private-endpoint-create) to create a private link endpoint for the workspace.
183+
After you create the workspace, use the [Azure networking CLI commands](/cli/azure/network/private-endpoint#az-network-private-endpoint-create) to create a private link endpoint for the workspace.
178184

179185
```azurecli-interactive
180186
az network private-endpoint create \
181187
--name <private-endpoint-name> \
182-
--vnet-name <vnet-name> \
188+
--vnet-name <virtual-network-name> \
183189
--subnet <subnet-name> \
184190
--private-connection-resource-id "/subscriptions/<subscription>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>" \
185191
--group-id amlworkspace \
@@ -198,13 +204,13 @@ az network private-dns link vnet create \
198204
-g <resource-group-name> \
199205
--zone-name 'privatelink.api.azureml.ms' \
200206
--name <link-name> \
201-
--virtual-network <vnet-name> \
207+
--virtual-network <virtual-network-name> \
202208
--registration-enabled false
203209
204210
az network private-endpoint dns-zone-group create \
205211
-g <resource-group-name> \
206212
--endpoint-name <private-endpoint-name> \
207-
--name myzonegroup \
213+
--name <zone-group-name> \
208214
--private-dns-zone 'privatelink.api.azureml.ms' \
209215
--zone-name 'privatelink.api.azureml.ms'
210216
@@ -217,13 +223,13 @@ az network private-dns link vnet create \
217223
-g <resource-group-name> \
218224
--zone-name 'privatelink.notebooks.azure.net' \
219225
--name <link-name> \
220-
--virtual-network <vnet-name> \
226+
--virtual-network <virtual-network-name> \
221227
--registration-enabled false
222228
223229
az network private-endpoint dns-zone-group add \
224230
-g <resource-group-name> \
225231
--endpoint-name <private-endpoint-name> \
226-
--name myzonegroup \
232+
--name <zone-group-name> \
227233
--private-dns-zone 'privatelink.notebooks.azure.net' \
228234
--zone-name 'privatelink.notebooks.azure.net'
229235
```
@@ -335,7 +341,7 @@ az group delete -g <resource-group-name>
335341

336342
For more information, see [az ml workspace delete](/cli/azure/ml/workspace#az-ml-workspace-delete).
337343

338-
### Troubleshoot resource provider errors
344+
## Troubleshoot resource provider errors
339345

340346
[!INCLUDE [machine-learning-resource-provider](includes/machine-learning-resource-provider.md)]
341347

0 commit comments

Comments
 (0)